684 research outputs found
Transient stability analysis in Multi-terminal VSC-HVDC grids
A novel approach to transient stability analysis in multi-terminal high voltage direct current (MTDC) grids is presented in this paper. A symmetrical three-phase fault in an ac grid connected to a rectifier terminal of the MTDC grid causes the power injected into the dc grid to decrease, which in turn leads to a lower dc voltage in the MTDC grid. If dc voltage drops below a critical voltage limit before the ac fault is cleared, then the dc grid becomes unstable and its operation is disrupted. An analytical approach is proposed in this paper to calculate the critical clearing time of a fault in an ac grid behind a rectifier terminal beyond which dc voltage collapse occurs. A five-terminal MTDC grid modeled in EMTDC/PSCAD is used to validate the results obtained with the analytical method
Dynamics of the normal gut microbiota: A longitudinal one-year population study in Sweden
Temporal dynamics of the gut microbiota potentially limit the identification of microbial features associated with health status. Here, we used whole-genome metagenomic and 16S rRNA gene sequencing to characterize the intra- and inter-individual variations of gut microbiota composition and functional potential of a disease-free Swedish population (n = 75) over one year. We found that 23% of the total compositional variance was explained by intra-individual variation. The degree of intra-individual compositional variability was negatively associated with the abundance of Faecalibacterium prausnitzii (a butyrate producer) and two Bifidobacterium species. By contrast, the abundance of facultative anaerobes and aerotolerant bacteria such as Escherichia coli and Lactobacillus acidophilus varied extensively, independent of compositional stability. The contribution of intra-individual variance to the total variance was greater for functional pathways than for microbial species. Thus, reliable quantification of microbial features requires repeated samples to address the issue of intra-individual variations of the gut microbiota
neXtProt: a knowledge platform for human proteins
neXtProt (http://www.nextprot.org/) is a new human protein-centric knowledge platform. Developed at the Swiss Institute of Bioinformatics (SIB), it aims to help researchers answer questions relevant to human proteins. To achieve this goal, neXtProt is built on a corpus containing both curated knowledge originating from the UniProtKB/Swiss-Prot knowledgebase and carefully selected and filtered high-throughput data pertinent to human proteins. This article presents an overview of the database and the data integration process. We also lay out the key future directions of neXtProt that we consider the necessary steps to make neXtProt the one-stop-shop for all research projects focusing on human proteins
Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues
The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.United States. National Institutes of Health (1-U01-NS090473-01
Discovery of High-Affinity Protein Binding Ligands – Backwards
BACKGROUND: There is a pressing need for high-affinity protein binding ligands for all proteins in the human and other proteomes. Numerous groups are working to develop protein binding ligands but most approaches develop ligands using the same strategy in which a large library of structured ligands is screened against a protein target to identify a high-affinity ligand for the target. While this methodology generates high-affinity ligands for the target, it is generally an iterative process that can be difficult to adapt for the generation of ligands for large numbers of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a class of peptide-based protein ligands, called synbodies, which allow this process to be run backwards--i.e. make a synbody and then screen it against a library of proteins to discover the target. By screening a synbody against an array of 8,000 human proteins, we can identify which protein in the library binds the synbody with high affinity. We used this method to develop a high-affinity synbody that specifically binds AKT1 with a K(d)<5 nM. It was found that the peptides that compose the synbody bind AKT1 with low micromolar affinity, implying that the affinity and specificity is a product of the bivalent interaction of the synbody with AKT1. We developed a synbody for another protein, ABL1 using the same method. CONCLUSIONS/SIGNIFICANCE: This method delivered a high-affinity ligand for a target protein in a single discovery step. This is in contrast to other techniques that require subsequent rounds of mutational improvement to yield nanomolar ligands. As this technique is easily scalable, we believe that it could be possible to develop ligands to all the proteins in any proteome using this approach
Study of pathophysiology of Pompe disease and identification of novel therapeutic targets and biomarkers
Le basi molecolari e biochimiche della malattia di Pompe sono ormai ben note ma la fisiopatologia della malattia, ad oggi, resta ancora sconosciuta e la stessa terapia ha un’efficacia limitata nei pazienti. Il lavoro è focalizzato sullo studio delle interazioni proteiche dell’alfa glucosidasi acida (GAA), sulla presenza dello stress ossidativo nella malattia e nell’identificazione di nuovi biomarcatori per l’individuazione della diagnosi e per seguire la progressione della malattia. I risultati ottenuti offrono nuovi spunti per la comprensione dei meccanismi alla base della malattia e per l'individuazione di nuovi possibili target terapeutici
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand
Dysregulated mitophagy has been linked to Parkinson’s disease (PD) due to the role of PTEN-induced kinase 1 (PINK1) in mediating depolarization-induced mitophagy in vitro. Elegant mouse reporters have revealed the pervasive nature of basal mitophagy in vivo, yet the role of PINK1 and tissue metabolic context remains unknown. Using mito-QC, we investigated the contribution of PINK1 to mitophagy in metabolically active tissues. We observed a high degree of mitophagy in neural cells, including PDrelevant mesencephalic dopaminergic neurons and microglia. In all tissues apart from pancreatic islets, loss of Pink1 did not influence basal mitophagy, despite disrupting depolarization-induced Parkin activation. Our findings provide the first in vivo evidence that PINK1 is detectable at basal levels and that basal mammalian mitophagy occurs independently of PINK1. This suggests multiple, yet-tobe- discovered pathways orchestrating mammalian mitochondrial integrity in a context-dependent fashion, and this has profound implications for our molecular understanding of vertebrate mitophagy
Luzp4 defines a new mRNA export pathway in cancer cells
Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors. Luzp4 binds the principal mRNA export receptor Nxf1, enhances its RNA binding activity and complements Alyref knockdown in vivo. Whilst Luzp4 is up-regulated in a range of tumours, it appears preferentially expressed in melanoma cells where it is required for growth
Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer
Background:Podocalyxin-like 1 (PODXL) is a cell-adhesion glycoprotein and stem cell marker that has been associated with an aggressive tumour phenotype and poor prognosis in several forms of cancer. In this study, we investigated the prognostic impact of PODXL expression in colorectal cancer (CRC).Methods:Using tissue microarrays and immunohistochemistry, PODXL expression was evaluated in 536 incident CRC cases from a prospective, population-based cohort study. Kaplan-Meier analysis and Cox proportional hazards modelling were used to assess the impact of PODXL expression on cancer-specific survival (CSS) and overall survival (OS).Results:High PODXL expression was significantly associated with unfavourable clinicopathological characteristics, a shorter CSS (hazard ratio (HR)=1.98; 95% confidence interval (CI) 1.38-2.84, P<0.001) and 5-year OS (HR=1.85; 95% CI 1.29-2.64, P=0.001); the latter remaining significant in multivariate analysis (HR=1.52; 95% CI 1.03-2.25, P=0.036). In addition, in curatively resected stage III (T1-4, N1-2, M0) patients (n=122) with tumours with high PODXL expression, a significant benefit from adjuvant chemotherapy was demonstrated (p(interaction) =0.004 for CSS and 0.015 for 5-year OS in multivariate analysis).Conclusion:Podocalyxin-like 1 expression is an independent factor of poor prognosis in CRC. Our results also suggest that PODXL may be a useful marker to stratify patients for adjuvant chemotherapy
- …