19 research outputs found
Targeting pediatric leukemia propagating cells using anti-CD200 antibody therapy.
Treating refractory pediatric acute lymphoblastic leukemia (ALL) remains a challenge despite impressive remission rates (>90%) achieved in the last decade. The use of innovative immunotherapeutic approaches such as anti-CD19 chimeric antigen receptor T cells does not ensure durable remissions, because leukemia-propagating cells (LPCs) that lack expression of CD19 can cause relapse, which signifies the need to identify new markers of ALL. Here we investigated expression of CD58, CD97, and CD200, which were previously shown to be overexpressed in B-cell precursor ALL (BCP-ALL) in CD34(+)/CD19(+), CD34(+)/CD19(–), CD34(–)/CD19(+), and CD34(–)/CD19(–) LPCs, to assess their potential as therapeutic targets. Whole-genome microarray and flow cytometric analyses showed significant overexpression of these molecules compared with normal controls. CD58 and CD97 were mainly co-expressed with CD19 and were not a prerequisite for leukemia engraftment in immune deficient mice. In contrast, expression of CD200 was essential for engraftment and serial transplantation of cells in measurable residual disease (MRD) low-risk patients. Moreover, these CD200(+) LPCs could be targeted by using the monoclonal antibody TTI-CD200 in vitro and in vivo. Treating mice with established disease significantly reduced disease burden and extended survival. These findings demonstrate that CD200 could be an attractive target for treating low-risk ALL, with minimal off-tumor effects that beset current immunotherapeutic approaches
Novel approaches to generating cytotoxic T lymphocyte target structures
grantor:
University of TorontoCytotoxic T lymphocytes (CTLs) are important effectors in the immune response against viral infections and tumors. CTL function is critically dependent upon the recognition of a specific molecular target: a class I major histocompatibility complex (MHC) molecule with bound peptide antigen. Considerable effort has been focused on elucidating the structure, biochemistry, and cell biology of class I molecules. This information has provided a solid foundation for understanding antigen presentation, a basic process central to cellular immune recognition. In addition, an intimate knowledge of CTL target structure formation is proving useful for the development of new vaccine and immunotherapy strategies. This thesis describes two novel approaches for generating class I MHC/peptide complexes, which share the common feature of coupling MHC and peptide antigen. They were undertaken within the framework of developing new tools for probing class I antigen presentation and devising unique strategies for consideration in disease prevention and treatment. In the first approach, the biosynthesis and endoplasmic reticulum (ER) translocation of MHC and peptide were transiently coupled by inserting a CTL epitope into the signal sequence of a class I MHC heavy chain. It was speculated that such an integrated peptide would be liberated by ER enzymes and preferentially form CTL target structures. Although the signal sequence-incorporated epitope could be presented by its restricting class I molecule, this presentation was unexpectedly observed to require TAP (transporter-associated with antigen processing) transport. This result indicated a cytosolic origin for the signal sequence peptide, and suggested a lack of ER processing. The second strategy achieved a more permanent peptide-MHC linkage by covalently coupling CTL epitopes to the class I light chain, beta 2-microglobuhn (ß2m). Such peptide-ß2m proteins could efficiently form CTL target structures when expressed endogenously or added to cells exogenously. Importantly, covalent linkage to ß2m enhanced the MHC stability and antigenicity of suboptimal class I epitopes. This strategy, therefore, offers the potential to generate high levels of stable, defined class I MHC/peptide complexes, which could be valuable in vaccine and immunotherapy design.Ph.D
Clinical Response to Anti-CD47 Immunotherapy Is Associated with Rapid Reduction of Exhausted Bystander CD4+ BTLA+ T Cells in Tumor Microenvironment of Mycosis Fungoides
Cancer progression in mycosis fungoides, the most common form of cutaneous T-cell lymphoma, occurs in a predictable, sequential pattern that starts from patches and that evolves to plaques and later to tumors. Therefore, unlocking the relationship between the microarchitecture of mycosis fungoides and the clinical counterparts of that microstructure represents important steps for the design of targeted therapies. Using multispectral fluorescent imaging, we show that the progression of mycosis fungoides from plaque to tumor parallels the cutaneous expansion of the malignant CD4+ T cells that express TOX. The density of exhausted BTLA+ CD4+ T cells around malignant CD4+TOX+ cells was higher in tumors than it was in plaques, suggesting that undesired safeguards are in place within the tumor microenvironment that prevent immune activation and subsequent cancer eradication. Overriding the CD47 checkpoint with an intralesional SIRPαFc fusion decoy receptor induced the resolution of mycosis fungoides in patients that paralleled an amplified expansion of NK and CD8+ T cells in addition to a reduction of the exhausted BTLA+ CD4+ T cells that were engaged in promiscuous intercellular interactions. These therapeutic benefits of the CD47 blockade were further unleashed by adjuvant interferon-α, which stimulates cytotoxic cells, underscoring the importance of an inflamed microenvironment in facilitating the response to immunotherapy. Collectively, these findings support CD47 as a therapeutic target in treating mycosis fungoides and demonstrate a synergistic role of interferon-α in exploiting these clinical benefits
Targeting CD47-SIRPa axis shows potent preclinical anti-tumor activity as monotherapy and synergizes with PARP inhibition
Abstract The objective was to correlate CD47 gene expression with resistance to immune checkpoint inhibitors (ICI) in tumor tissue of gynecological cancer (GC). Further, we sought to assess the efficacy of targeting CD47 pathway alone and in combination in pre-clinical ovarian cancer (OC) models. We performed transcriptomic analyses in GC treated with ICI. Signaling pathway enrichment analysis was performed using Ingenuity Pathway Analysis. Immune cell abundance was estimated. CD47 expression was correlated with other pathways, objective response, and progression-free survival (PFS). Anti-tumor efficacy of anti-CD47 therapy alone and in combination was investigated both in-vitro and in-vivo using cell-line derived xenograft (CDX) and patient-derived xenograft (PDX) models. High CD47 expression associated with lower response to ICI and trended toward lower PFS in GC patients. Higher CD47 associated negatively with PDL1 and CTLA4 expression, as well as cytotoxic T-cells and dendritic cells but positively with TGF-β, BRD4 and CXCR4/CXCL12 expression. Anti-CD47 significantly enhanced macrophage-mediated phagocytosis of OC cells in-vitro and exhibited potent anti-tumor activity in-vivo in OC CDX and PDX models. In-vitro treatment with PARPi increased CD47 expression. Anti-CD47 led to significantly enhanced in-vitro phagocytosis, enhanced STING pathway and synergized in-vivo when combined with PARP inhibitors in BRCA-deficient OC models. This study provides insight on the potential role of CD47 in mediating immunotherapy resistance and its association with higher TGF-β, BRD4 and CXCR4/CXCL12 expression. Anti-CD47 showed potent anti-tumor activity and synergized with PARPi in OC models. These data support clinical development of anti-CD47 therapy with PARPi in OC
Targeting CD47-SIRPa Axis Shows Potent Preclinical Anti-Tumor Activity as Monotherapy and Synergizes with PARP Inhibition
The objective was to correlate CD47 gene expression with resistance to immune checkpoint inhibitors (ICI) in tumor tissue of gynecological cancer (GC). Further, we sought to assess the efficacy of targeting CD47 pathway alone and in combination in pre-clinical ovarian cancer (OC) models. We performed transcriptomic analyses in GC treated with ICI. Signaling pathway enrichment analysis was performed using Ingenuity Pathway Analysis. Immune cell abundance was estimated. CD47 expression was correlated with other pathways, objective response, and progression-free survival (PFS). Anti-tumor efficacy of anti-CD47 therapy alone and in combination was investigated both in-vitro and in-vivo using cell-line derived xenograft (CDX) and patient-derived xenograft (PDX) models. High CD47 expression associated with lower response to ICI and trended toward lower PFS in GC patients. Higher CD47 associated negatively with PDL1 and CTLA4 expression, as well as cytotoxic T-cells and dendritic cells but positively with TGF-β, BRD4 and CXCR4/CXCL12 expression. Anti-CD47 significantly enhanced macrophage-mediated phagocytosis of OC cells in-vitro and exhibited potent anti-tumor activity in-vivo in OC CDX and PDX models. In-vitro treatment with PARPi increased CD47 expression. Anti-CD47 led to significantly enhanced in-vitro phagocytosis, enhanced STING pathway and synergized in-vivo when combined with PARP inhibitors in BRCA-deficient OC models. This study provides insight on the potential role of CD47 in mediating immunotherapy resistance and its association with higher TGF-β, BRD4 and CXCR4/CXCL12 expression. Anti-CD47 showed potent anti-tumor activity and synergized with PARPi in OC models. These data support clinical development of anti-CD47 therapy with PARPi in OC
Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sézary syndrome: a multicentre, phase 1 study.
BACKGROUND: Intravenous TTI-621 (SIRPα-IgG1 Fc) was previously shown to have activity in relapsed or refractory haematological malignancies. This phase 1 study evaluated the safety and activity of TTI-621 in patients with percutaneously accessible relapsed or refractory mycosis fungoides, Sézary syndrome, or solid tumours. Here we report the clinical and translational results among patients with mycosis fungoides or Sézary syndrome.
METHODS: This multicentre, open-label, phase 1 study was conducted at five academic health-care and research centres in the USA. Eligible patients were aged 18 years or older; had injectable, histologically or cytologically confirmed relapsed or refractory cutaneous T-cell lymphoma (CTCL) or solid tumours; Eastern Cooperative Oncology Group performance status of 2 or less; and adequate haematological, renal, hepatic, and cardiac function. TTI-621 was injected intralesionally in a sequential dose escalation (cohorts 1-5; single 1 mg, 3 mg, or 10 mg injection or three 10 mg injections weekly for 1 or 2 weeks) and in expansion cohorts (cohorts 6-9; 2 week induction at the maximum tolerated dose; weekly continuation was allowed). In cohort 6, patients were injected with TTI-621 in a single lesion and in cohort 7, they were injected in multiple lesions. In cohort 8, TTI-621 was combined with pembrolizumab 200 mg injections per product labels. In cohort 9, TTI-621 was combined with the standard labelled dose of subcutaneous pegylated interferon alpha-2a 90 μg. The primary endpoint was the incidence and severity of adverse events. The study is registered with ClinicalTrials.gov, NCT02890368, and was closed by the sponsor to focus on intravenous studies with TTI-621.
FINDINGS: Between Jan 30, 2017, and March 31, 2020, 66 patients with mycosis fungoides, Sézary syndrome, other CTCL, or solid tumours were screened, 35 of whom with mycosis fungoides or Sézary syndrome were enrolled and received intralesional TTI-621 (escalation, n=13; expansion, n=22). No dose-limiting toxicities occurred; the maximum tolerated dose was not established. In the dose expansion cohorts, the maximally assessed regimen (10 mg thrice weekly for 2 weeks) was used. 25 (71%) patients had treatment-related adverse events; the most common (occurring in ≥10% of patients) were chills (in ten [29%] patients), injection site pain (nine [26%]), and fatigue (eight [23%]). No treatment-related adverse events were grade 3 or more or serious. There were no treatment-related deaths. Rapid responses (median 45 days, IQR 17-66) occurred independently of disease stage or injection frequency. 26 (90%) of 29 evaluable patients had decreased Composite Assessment of Index Lesion Severity (CAILS) scores; ten (34%) had a decrease in CAILS score of 50% or more (CAILS response). CAILS score reductions occurred in adjacent non-injected lesions in eight (80%) of ten patients with paired assessments and in distal non-injected lesions in one additional patient.
INTERPRETATION: Intralesional TTI-621 was well tolerated and had activity in adjacent or distal non-injected lesions in patients with relapsed or refractory mycosis fungoides or Sézary syndrome, suggesting it has systemic and locoregional abscopal effects and potential as an immunotherapy for these conditions.
FUNDING: Trillium Therapeutics