128 research outputs found

    Current Understanding of the Gut Microflora in Subjects with Nutrition-Associated Metabolic Disorder Such as Obesity and/or Diabetes : Is There Any Relevance with Oral Microflora?

    Get PDF
    Purpose of review: The oral cavity is one of the main gateways to the whole body and leads to the gastrointestinal tract. Both oral cavity and gastrointestinal tract have complex ecosystems of microorganisms called microbiota. Recent studies have showed that altered local microbiome in human, such as gut microflora, is associated with various systemic diseases. This review focuses on the association between the microbiota at local sites, such as gut and oral cavity, and the systemic diseases, especially nutrition-associated metabolic disorder, such as obesity and/or diabetes. Recent findings: The gut microbiota has a potential for regulation in host immune system and metabolisms, such as energy, glucose and lipid, and is therefore an additional contributing environmental factor to the pathophysiology of obesity and diabetes as well as gut infectious inflammatory diseases. In addition, oral microorganisms play important roles as reservoirs for exacerbation of gut diseases and altered oral microbial profiles causing periodontal diseases, one of common oral infectious diseases, has been also associated with several systemic diseases including diabetes. Summary: It is necessary to consider that impaired oral microbiota, called oral dysbiosis, may affect the metabolic disorders leading to obesity and diabetes in addition to the gut inflammatory diseases via alteration of gut microflora. The relevance of oral microflora to gut dysbiosis leading to nutrition-associated metabolic disorder should be addressed as future investigations

    Functional Roles of Bā€Vitamins in the Gut and Gut Microbiome

    Get PDF
    The gut microbiota produce hundreds of bioactive compounds, including B-vitamins, which play significant physiological roles in hosts by supporting the fitness of symbiotic species and suppressing the growth of competitive species. B-vitamins are also essential to the host and certain gut bacterium. Although dietary B-vitamins are mainly absorbed from the small intestine, excess B-vitamins unable to be absorbed in the small intestine are supplied to the distal gut. In addition, B-vitamins are supplied from biosynthesis by distal gut microbiota. B-vitamins in the distal colon may perform many important functions in the body; they act as (1) nutrients for a host and their microbiota, (2) regulators of immune cell activity, (3) mediators of drug efficacy, (4) supporters of survival, or the fitness of certain bacterium, (5) suppressors of colonization by pathogenic bacteria, and (6) modulators of colitis. Insights into basic biophysical principles, including the bioavailability of B-vitamins and their derivatives in the distal gut are still not fully elucidated. Here we briefly review the function of single B-vitamin in the distal gut including their roles in relation to bacteria. The prospect of extending analytical methods to better understand the role of B-vitamins in the gut is also explored

    胎ē”ŸęœŸć®ä½Žē”Øé‡ęŠ—čŒč–¬ę‘‚å–ćŒć€å­ć®č…ø内ē“°čŒå¢ć‚„ä½“č„‚č‚Ŗēµ„ęˆć«åŠć¼ć™å½±éŸæ

    Get PDF
    Several environmental factors during the prenatal period transgenerationally affect the health of newborns in later life. Because low-dose antibiotics have been used for promoting the growth of crops and livestock in agriculture, humans may have ingested residual antibiotics for several decades. However, the effect of prenatal administration of low-dose antibiotics on newbornsā€™ health in later life is unclear. In the present study, we found that prenatal treatment of murine mothers with low-dose antibiotics increased the abundance of bacteria of the phylum Firmicutes and the genera Clostridium IV and XIVa in feces from pups. In addition, the body fat percentage of mice in the antibiotic-treated group was higher than those in the control group at 12 weeks of age even though all pups were fed a standard diet. The body fat percentage of all mice was correlated with the abundance of fecal bacteria of Clostridium IV and XIVa. These results predict that low-dose antibiotic administration during the prenatal period affects the gut microbiota of newborns and possibly their health in later life

    CFTR associated diarrhea in VP-infection

    Get PDF
    Vibrio parahaemolyticus is a foodborne bacterium that causes acute gastroenteritis through the consumption of contaminated, raw, or undercooked seafood. Cystic fibrosis transmembrane conductance regulator (CFTR) is a well-characterized chloride channel that regulates several other ion channels and transporters to maintain water homeostasis in the gut lumen. Also, CFTR is a main target of bacterial infection-associated diarrhea. Hence, the aim of this study was to clarify the contribution of CFTR in V. parahaemolyticus-induced diarrhea in a mouse model of intestinal loop fluid accumulation, with CFTR inhibitors and a CFTR knockout model. The results indicated that CFTR plays a critical role in fluid accumulation in response to V. parahaemolyticus infection. We also investigated the inflammatory association in CFTR-mediated V. parahaemolyticus-induced fluid secretion with cyclooxygenase inhibitors and found that fluid accumulation was decreased by inhibition of cyclooxygenase 2 produced by neutrophils. These findings suggest that V. parahaemolyticus-inducing infiltration and activation of neutrophils also participated in CFTR mediated fluid secretion. This study reveals an important relationship between V. parahaemolyticus-induced diarrhea and inflammation in a mouse model

    Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice

    Get PDF
    The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans. It is used as a food additive to prevent caries. We previously showed that 1.5ā€“4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella, whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism

    New Function of Autophagy in C. jejuni Invasion

    Get PDF
    Campylobacter jejuni is a leading cause of food-borne disease worldwide. The pathogenicity of C. jejuni is closely associated with the internalization process in host epithelial cells, which is related to a host immune response. Autophagy indicates a key role in the innate immune system of the host to exclude invasive pathogens. Most bacteria are captured by autophagosomes and degraded by autophagosome-lysosome fusion in host cells. However, several pathogens, such as Salmonella and Shigella, avoid and/or escape autophagic degradation to establish infection. But autophagy involvement as a host immune response to C. jejuni infection has not been clarified. This study revealed autophagy association in C. jejuni infection. During infection, C. jejuni activated the Rho family small GTPase Rac1 signaling pathway, which modulates actin remodeling and promotes the internalization of this pathogen. In this study, we found the LC3 contribution to C. jejuni invasion signaling via the Rac1 signaling pathway. Interestingly, during C. jejuni invasion, LC3 was recruited to bacterial entry site depending on Rac1 GTPase activation just at the early step of the infection. C. jejuni infection induced LC3-II conversion, and autophagy induction facilitated C. jejuni internalization. Also, autophagy inhibition attenuated C. jejuni invasion step. Moreover, Rac1 recruited LC3 to the cellular membrane, activating the invasion of C. jejuni. Altogether, our findings provide insights into the new function of LC3 in bacterial invasion. We found the interaction between the Rho family small GTPase, Rac1, and autophagy-associated protein, LC3

    Glycolate is a Novel Marker of Vitamin B2 Deficiency Involved in Gut Microbe Metabolism in Mice

    Get PDF
    Microbes in the human gut play a role in the production of bioactive compounds, including some vitamins. Although several studies attempted to identify definitive markers for certain vitamin deficiencies, the role of gut microbiota in these deficiencies is unclear. To investigate the role of gut microbiota in deficiencies of four vitamins, B2, B6, folate, and B12, we conducted a comprehensive analysis of metabolites in mice treated and untreated with antibiotics. We identified glycolate (GA) as a novel marker of vitamin B2 (VB2) deficiency, and show that gut microbiota sense dietary VB2 deficiency and accumulate GA in response. The plasma GA concentration responded to reduced VB2 supply from both the gut microbiota and the diet. These results suggest that GA is a novel marker that can be used to assess whether or not the net supply of VB2 from dietary sources and gut microbiota is sufficient. We also found that gut microbiota can provide short-term compensation for host VB2 deficiency when dietary VB2 is withheld

    Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice

    Get PDF
    Non-caloric artificial sweeteners (NASs) provide sweet tastes to food without adding calories or glucose. NASs can be used as alternative sweeteners for controlling blood glucose levels and weight gain. Although the consumption of NASs has increased over the past decade in Japan and other countries, whether these sweeteners affect the composition of the gut microbiome is unclear. In the present study, we examined the effects of sucralose or acesulfame-K ingestion (at most the maximum acceptable daily intake (ADI) levels, 15 mg/kg body weight) on the gut microbiome in mice. Consumption of sucralose, but not acesulfame-K, for 8 weeks reduced the relative amount of Clostridium cluster XIVa in feces. Meanwhile, sucralose and acesulfame-K did not increase food intake, body weight gain or liver weight, or fat in the epididymis or cecum. Only sucralose intake increased the concentration of hepatic cholesterol and cholic acid. Moreover, the relative concentration of butyrate and the ratio of secondary/primary bile acids in luminal metabolites increased with sucralose consumption in a dose-dependent manner. These results suggest that daily intake of maximum ADI levels of sucralose, but not acesulfame-K, affected the relative amount of the Clostridium cluster XIVa in fecal microbiome and cholesterol bile acid metabolism in mice

    Characterization of Ī±-gustducin

    Get PDF
    Aims/Introduction: Taste receptors, T1rs and T2rs, and the tasteā€selective Gā€protein, Ī±ā€gustducin, are expressed outside the tasteā€sensing system, such as enteroendocrine L cells. Here, we examined whether Ī±ā€gustducin also affects nutrition sensing and insulin secretion by pancreatic Ī²ā€cells. Materials and Methods: The expression of Ī±ā€gustducin and taste receptors was evaluated in Ī²ā€cell lines, and in rat and mouse islets either by quantitative polymerase chain reaction or fluorescence immunostaining. The effects of Ī±ā€gustducin knockdown on insulin secretion and on cyclic adenosine monophosphate and intracellular Ca2+ levels in rat INSā€1 cells were estimated. Sucralose (taste receptor agonist)ā€induced insulin secretion was investigated in INSā€1 cells with Ī±ā€gustducin suppression and in islets from mouse disease models. Results: The expression of Tas1r3 and Ī±ā€gustducin was confirmed in Ī²ā€cell lines and pancreatic islets. Basal levels of cyclic adenosine monophosphate, intracellular calcium and insulin secretion were significantly enhanced with Ī±ā€gustducin knockdown in INSā€1 cells. The expression of Ī±ā€gustducin was decreased in highā€fat dietā€fed mice and in diabetic db/db mice. Sucraloseā€induced insulin secretion was not attenuated in INSā€1 cells with Ī±ā€gustducin knockdown or in mouse islets with decreased expression of Ī±ā€gustducin. Conclusions: Ī±ā€Gustducin is involved in the regulation of cyclic adenosine monophosphate, intracellular calcium levels and insulin secretion in pancreatic Ī²ā€cells in a manner independent of taste receptor signaling. Ī±ā€Gustducin might play a novel role in Ī²ā€cell physiology and the development of type 2 diabetes

    Effects of xylitol on metabolic parameters and visceral fat accumulation

    Get PDF
    Xylitol is widely used as a sweetener in foods and medications. Xylitol ingestion causes a small blood glucose rise, and it is commonly used as an alternative to high-energy supplements in diabetics. In previous studies, a xylitol metabolite, xylulose-5-phosphate, was shown to activate carbohydrate response element binding protein, and to promote lipogenic enzyme gene transcription in vitro; however, the effects of xylitol in vivo are not understood. Here we investigated the effects of dietary xylitol on lipid metabolism and visceral fat accumulation in rats fed a high-fat diet. Sprague-Dawley rats were fed a high-fat diet containing 0Ā g (control), 1.0Ā g/100Ā kcal (X1) or 2.0Ā g/100Ā kcal (X2) of xylitol. After the 8-week feeding period, visceral fat mass and plasma insulin and lipid concentrations were significantly lower in xylitol-fed rats than those in high-fat diet rats. Gene expression levels of ChREBP and lipogenic enzymes were higher, whereas the expression of sterol regulatory-element binding protein 1c was lower and fatty acid oxidation-related genes were significantly higher in the liver of xylitol-fed rats as compared with high-fat diet rats. In conclusion, intake of xylitol may be beneficial in preventing the development of obesity and metabolic abnormalities in rats with diet-induced obesity
    • ā€¦
    corecore