131 research outputs found

    Third harmonic generation from collective modes in disordered superconductors

    Get PDF
    Recent experiments with strong THz fields in both conventional and unconventional superconductors have clearly evidenced a marked third-harmonic generation below the superconducting temperature TcT_c. Its interpretation challenged substantial theoretical work aimed at establishing the relative efficiency of quasiparticle excitations and collective modes in triggering such a resonant response. Here we compute the non-linear current by implementing a time-dependent Bogoljubov de-Gennes approach, with the twofold aim to account non-perturbatively for the effect of local disorder, and to include the contribution of all collective modes, i.e. superconducting amplitude (Higgs) and phase fluctuations, and charge fluctuations. We show that, in agreement with previous work, already at small disorder the quasiparticle response is dominated by paramagnetic effects. We further demonstrate that paramagnetic processes mediate also the response of all collective modes, with a substantial contribution of charge/phase fluctuations. These processes, which have been overlooked so far, turn out to dominate the third-order current at strong disorder. In addition, we show that disorder strongly influences the polarization dependence of the non-linear response, with a marked difference between the clean and the disordered case. Our results are particularly relevant for recent experiments in cuprates, whose band structure is in a first approximation reproduced by our lattice model

    Schwann cells and mesenchymal stem cells in laminin- or fibronectin-aligned matrices and regeneration across a critical size defect of 15 mm in the rat sciatic nerve

    Get PDF
    OBJECTIVE Artificial nerve guides are being developed to substitute for autograft repair after peripheral nerve injuries. However, the use of conduits is limited by the length of the gap that needs to be bridged, with the success of regeneration highly compromised in long gaps. Addition of aligned proregenerative cells and extracellular matrix (ECM) components inside the conduit can be a good strategy to achieve artificial grafts that recreate the natural environment offered by a nerve graft. The purpose of this study was to functionalize chitosan devices with different cell types to support regeneration in limiting gaps in the rat peripheral nerve. METHODS The authors used chitosan devices combined with proteins of the ECM and cells in a rat model of sciatic nerve injury. Combinations of fibronectin and laminin with mesenchymal stem cells (MSCs) or Schwann cells (SCs) were aligned within tethered collagen-based gels, which were placed inside chitosan tubes that were then used to repair a critical-size gap of 15 mm in the rat sciatic nerve. Electrophysiology and algesimetry tests were performed to analyze functional recovery during the 4 months after injury and repair. Histological analysis was performed at the midlevel and distal level of the tubes to assess the number of regenerated myelinated fibers. RESULTS Functional analysis demonstrated that SC-aligned scaffolds resulted in 100% regeneration success in a 15-mm nerve defect in this rat model. In contrast, animals that underwent repair with MSC-aligned constructs had only 90% regeneration success, and those implanted with acellular bridges had only 75% regeneration success. CONCLUSIONS These results indicate that the combination of chitosan conduits with ECM-enriched cellular gels represents a good alternative to the use of autografts for repairing long nerve gaps

    Tubulization with chitosan guides for the repair of long gap peripheral nerve injury in the rat

    Get PDF
    Biosynthetic guides can be an alternative to nerve grafts for reconstructing severely injured peripheral nerves. The aim of this study was to evaluate the regenerative capability of chitosan tubes to bridge critical nerve gaps (15 mm long) in the rat sciatic nerve compared with silicone (SIL) tubes and nerve autografts (AGs). A total of 28 Wistar Hannover rats were randomly distributed into four groups (n = 7 each), in which the nerve was repaired by SIL tube, chitosan guides of low (∼2%, DAI) and medium (∼5%, DAII) degree of acetylation, and AG. Electrophysiological and algesimetry tests were performed serially along 4 months follow-up, and histomorphometric analysis was performed at the end of the study. Both groups with chitosan tubes showed similar degree of functional recovery, and similar number of myelinated nerve fibers at mid tube after 4 months of implantation. The results with chitosan tubes were significantly better compared to SIL tubes (P < 0.01), but lower than with AG (P < 0.01). In contrast to AG, in which all the rats had effective regeneration and target reinnervation, chitosan tubes from DAI and DAII achieved 43 and 57% success, respectively, whereas regeneration failed in all the animals repaired with SIL tubes. This study suggests that chitosan guides are promising conduits to construct artificial nerve grafts

    Land Use and Topography Influence in a Complex Terrain Area: A High Resolution Mesoscale Modelling Study over the Eastern Pyrenees using the WRF Model

    Get PDF
    Different types of land use (LU) have different physical properties which can change local energy balance and hence vertical fluxes of moisture, heat and momentum. This in turn leads to changes in near-surface temperature and moisture fields. Simulating atmospheric flow over complex terrain requires accurate local-scale energy balance and therefore model grid spacing must be sufficient to represent both topography and land-use. In this study we use both the Corine Land Cover (CLC) and United States Geological Survey (USGS) land use databases for use with the Weather Research and Forecasting (WRF) model and evaluate the importance of both land-use classification and horizontal resolution in contributing to successful modelling of surface temperatures and humidities observed from a network of 39 sensors over a 9 day period in summer 2013. We examine case studies of the effects of thermal inertia and soil moisture availability at individual locations. The scale at which the LU classification is observed influences the success of the model in reproducing observed patterns of temperature and moisture. Statistical validation of model output demonstrates model sensitivity to both the choice of LU database used and the horizontal resolution. In general, results show that on average, by a) using CLC instead of USGS and/or b) increasing horizontal resolution, model performance is improved. We also show that the sensitivity to these changes in the model performance shows a daily cycle

    Terahertz electric-field driven dynamical multiferroicity in SrTiO3_3

    Full text link
    The emergence of collective order in matter is among the most fundamental and intriguing phenomena in physics. In recent years, the ultrafast dynamical control and creation of novel ordered states of matter not accessible in thermodynamic equilibrium is receiving much attention. Among those, the theoretical concept of dynamical multiferroicity has been introduced to describe the emergence of magnetization by means of a time-dependent electric polarization in non-ferromagnetic materials. In simple terms, a large amplitude coherent rotating motion of the ions in a crystal induces a magnetic moment along the axis of rotation. However, the experimental verification of this effect is still lacking. Here, we provide evidence of room temperature magnetization in the archetypal paraelectric perovskite SrTiO3_3 due to this mechanism. To achieve it, we resonantly drive the infrared-active soft phonon mode with intense circularly polarized terahertz electric field, and detect a large magneto-optical Kerr effect. A simple model, which includes two coupled nonlinear oscillators whose forces and couplings are derived with ab-initio calculations using self-consistent phonon theory at a finite temperature, reproduces qualitatively our experimental observations on the temporal and frequency domains. A quantitatively correct magnitude of the effect is obtained when one also considers the phonon analogue of the reciprocal of the Einsten - de Haas effect, also called the Barnett effect, where the total angular momentum from the phonon order is transferred to the electronic one. Our findings show a new path for designing ultrafast magnetic switches by means of coherent control of lattice vibrations with light.Comment: Main text: 10 pages, 4 figures, methods and 8 supplemental figure

    A micromachined thermoelectric sensor for natural gas analysis: Multivariate calibration results

    Full text link
    The potential use of a micromachined thermopile based sensor device for analyzing natural gas is explored. The sensor consists of a thermally isolated hotplate, which is heated by the application of a sequence of programmed voltages to an integrated heater. Once the hotplate reaches a stationary temperature, the thermopile provides a signal proportional to the hotplate temperature. These signals are processed in order to determine different natural gas properties. Sensor response is mainly dependent on the thermal conductivity of the surrounding gas at different temperatures. Seven predicted properties (normal density, superior heating value, Wobbe index and the concentrations of methane, ethane, carbon dioxide and nitrogen) are calibrated against sensor signals by using multivariate regression, in particular partial least squares. Experimental data have been used for calibration and validation. Results show property prediction capability with reasonable accuracy except for prediction of carbon dioxide concentration. A detailed uncertainty analysis is provided to better understand the metrological limits of the system. These results imply for the first time the possibility of designing unprecedented low-cost natural gas analyzers. The concept may be extended to other constrained gas mixtures (e.g. of a known number of components) to enable low-cost multicomponent gas analyzers

    Treat-and-extend versus fixed bimonthly treatment regimens for treatment-naive neovascular age-related macular degeneration: real world data from the Fight Retinal Blindness registry

    Get PDF
    Purpose To compare the outcomes of two different antivascular endothelial growth factor treatment regimens for treatment-naive eyes with neovascular age-related macular degeneration in routine clinical care at 12 and 24 months in Spain. Methods Observational study using the Fight Retinal Blindness (FRB) outcomes registry platform. Eyes were treated with fixed bimonthly (FB) aflibercept group at one center and a treat-and-extend (TAE) regimen using either aflibercept or ranibizumab at the other center. Results We included 192 eyes. Of these, 160 eyes (83%) completed 12 months (86 TAE and 74 FB) and 79 (41%) completed 24 months (46 for TAE and 33 for FB) of follow-up. No statistically significant differences (p > 0.05) were found regarding mean visual acuity (VA, logMAR letters) at baseline (12 month cohort TAE 59.6 vs FB 57.9; 24 month cohort TAE 61.7 vs FB 62.6), final meanVA (12 month cohort TAE 61.1 vs FB 63.0; 24 month cohort TAE 64.8 vs FB 66.4), and median number of injections (12 months TAE 7 vs FB 7; 24 months TAE 11 vs FB 12). However, the distribution of injection frequencies for the TAE group was larger, with 35% of TAE eyes receiving ! 6 injections at 12 months compared with only 19% of FB eyes (p = 0.024). Conclusion Similar VA results were observed with TAE and FB regimens, with no differences in the median number of injections. However, the TAE approach seemed to deliver a wider distribution of injection frequencies due to its individualized approach, which may help reduce the burden of injections in some eyes

    Stabilization, Rolling, and Addition of Other Extracellular Matrix Proteins to Collagen Hydrogels Improve Regeneration in Chitosan Guides for Long Peripheral Nerve Gaps in Rats

    Get PDF
    BACKGROUND: Autograft is still the gold standard technique for the repair of long peripheral nerve injuries. The addition of biologically active scaffolds into the lumen of conduits to mimic the endoneurium of peripheral nerves may increase the final outcome of artificial nerve devices. Furthermore, the control of the orientation of the collagen fibers may provide some longitudinal guidance architecture providing a higher level of mesoscale tissue structure. OBJECTIVE: To evaluate the regenerative capabilities of chitosan conduits enriched with extracellular matrix-based scaffolds to bridge a critical gap of 15 mm in the rat sciatic nerve. METHODS: The right sciatic nerve of female Wistar Hannover rats was repaired with chitosan tubes functionalized with extracellular matrix-based scaffolds fully hydrated or stabilized and rolled to bridge a 15 mm nerve gap. Recovery was evaluated by means of electrophysiology and algesimetry tests and histological analysis 4 months after injury. RESULTS: Stabilized constructs enhanced the success of regeneration compared with fully hydrated scaffolds. Moreover, fibronectin-enriched scaffolds increased muscle reinnervation and number of myelinated fibers compared with laminin-enriched constructs. CONCLUSION: A mixed combination of collagen and fibronectin may be a promising internal filler for neural conduits for the repair of peripheral nerve injuries, and their stabilization may increase the quality of regeneration over long gaps

    Maintenance drug therapy of panic disorder

    Full text link
    The efficacy of tricyclics and benzodiazepines in the short term (approximately 2-4 months) treatment of panic disorder is well demonstrated, but efficacy over the longer term is not considered established. The present study provided systematic data from a double blind comparison of maintenance therapy (up to 8 months) of panic disorder with or without agoraphobia with alprazolam, imipramine, or placebo in 181 patients who had responded to the same regimen in a randomized 8-week treatment trial. All three groups had improved during the first 2 months (active treatments more than placebo and about equal to each other), and all maintained or extended their improvement over the next 6 months without any significant change in dose. More than twice as many alprazolam and imipramine than placebo patients (15%) remained in treatment for the full 8 months and did slightly better on symptom measures than the remaining placebo patients. Both medications were well tolerated during the maintenance period. The data suggest sustained efficacy and safety of imipramine and alprazolam over an extended period. More specifically, they suggest that tolerance does not develop to the therapeutic effects of either drug.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31052/1/0000729.pd
    corecore