78 research outputs found

    Identification of a Novel β-Cell Glucokinase (GCK) Promoter Mutation (−71G>C) That Modulates GCK Gene Expression Through Loss of Allele-Specific Sp1 Binding Causing Mild Fasting Hyperglycemia in Humans

    Get PDF
    OBJECTIVE: Inactivating mutations in glucokinase (GCK) cause mild fasting hyperglycemia. Identification of a GCK mutation has implications for treatment and prognosis; therefore, it is important to identify these individuals. A significant number of patients have a phenotype suggesting a defect in glucokinase but no abnormality of GCK. We hypothesized that the GCK beta-cell promoter region, which currently is not routinely screened, could contain pathogenic mutations; therefore, we sequenced this region in 60 such probands. RESEARCH DESIGN AND METHODS: The beta-cell GCK promoter was sequenced in patient DNA. The effect of the identified novel mutation on GCK promoter activity was assessed using a luciferase reporter gene expression system. Electrophoretic mobility shift assays (EMSAs) were used to determine the impact of the mutation on Sp1 binding. RESULTS: A novel -71G>C mutation was identified in a nonconserved region of the human promoter sequence in six apparently unrelated probands. Family testing established cosegregation with fasting hyperglycemia (> or = 5.5 mmol/l) in 39 affected individuals. Haplotype analysis in the U.K. family and four of the Slovakian families demonstrated that the mutation had arisen independently. The mutation maps to a potential transcriptional activator binding site for Sp1. Reporter assays demonstrated that the mutation reduces promoter activity by up to fourfold. EMSAs demonstrated a dramatic reduction in Sp1 binding to the promoter sequence corresponding to the mutant allele. CONCLUSIONS: A novel beta-cell GCK promoter mutation was identified that significantly reduces gene expression in vitro through loss of regulation by Sp1. To ensure correct diagnosis of potential GCK-MODY (maturity-onset diabetes of the young) cases, analysis of the beta-cell GCK promoter should be included

    Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines

    Get PDF
    Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles—the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation—with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature

    Cytokines and inflammatory mediators: 25. Certolizumab Pegol has a Different Profile from the other Anti-TNFS, Including Golimumab, in a Variety of in Vitro Assays

    Get PDF
    Background: Activities of the anti-TNFs, certolizumab pegol (CZP), etanercept (ETA), infliximab (IFX) and adalimumab (ADA), have been compared in a range of in vitro assays. CZP is the only licensed PEGylated Fab' anti-TNF; ETA is a fusion protein with an IgG1 Fc, and IFX and ADA are both antibodies with an IgG1 Fc. Golimumab (GLM) is a monoclonal IgG1 TNF inhibitor recently approved for a number of indications; it is thus of interest to assess the in vitro activity of GLM. In vitro assays previously used were neutralisation of TNF in the L929 bioassay, inhibition of LPS-driven cytokine production by monocytes, induction of apoptosis in activated lymphocytes and monocytes, and induction of neutrophil necrosis. Methods: Neutralisation of human TNF was assessed in the L929 bioassay using a range of concentrations of the anti-TNFs and a fixed concentration of TNF (100 pg/mL). Activity of the anti-TNFs at inhibiting LPS-driven IL-1β secretion by monocytes was assessed by incubating peripheral blood monocytes with various concentrations of the anti-TNF for 1 hour (hr) and then washing the cells. LPS was added for 4 hrs, the supernatants collected and the IL-1β level measured by ELISA. To assess induction of apoptosis, peripheral blood lymphocytes were activated for 2 days with 2 μg/mL CD3/CD28 and monocytes with 300 U/mL IL-4 and GMCSF for 3 days. The effect of the anti-TNFs on apoptosis was assessed by Annexin V staining using flow cytometry 24 hrs later. The effect of the anti-TNFs on neutrophil necrosis was determined by measuring myeloperoxidase release after 12 hrs. An isotype-matched control was used in all assays except the L929 bioassay. Results: IC90 neutralisation activity of the anti-TNFs in the L929 bioassay was 0.3 ng/mL for ETA, 4 ng/mL for GLM, 15 ng/mL for ADA, and 20 ng/mL for IFX, compared with 2.5 ng/mL for CZP. CZP was the most potent inhibitor of LPS-driven IL-1β secretion (IC50 ∼0.1 ng/mL), followed by GLM (20 ng/mL) and IFX (50 ng/mL). GLM, ADA, IFX and ETA induced apoptosis of monocytes and lymphocytes to a similar degree reaching a level of 23% and ∼40% at 100 μg/mL, respectively. CZP caused no increase in apoptosis above the levels seen with the isotype-matched control. In the neutrophil necrosis assay, ADA,IFX and GLM caused ∼70% necrosis at 100 μg/mL, and ETA 48%. CZP did not increase the level of necrosis above the level of the control. Conclusions: Bioactivity of the IgG1 molecules GLM, IFX and ADA in neutralising human TNF was inferior to that of CZP and ETA. CZP, the only PEGylated anti-TNF, had a different profile to the other anti-TNFs as it was the most potent at inhibiting LPS-driven IL-1β production by monocytes, did not induce apoptosis of activated monocytes and lymphocytes, and did not cause neutrophil necrosis. The clinical relevance of these in vitro effects is unknown. Nevertheless, these assays show interesting in vitro differences between the anti-TNFs. Disclosure statement: G.F. and A.N. are employees of UC

    Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells

    Get PDF
    The polymeric immunoglobulin receptor (pIgR) transports IgA antibodies across intestinal epithelial cells (IECs). Expression of pIgR is upregulated by proinflammatory signaling pathways via activation of nuclear factor-κB (NF-κB). Here, we examined the contributions of the RelA-dependent classical and RelB-dependent alternative pathways of NF-κB to pIgR regulation in the HT-29 human IEC line following stimulation with tumor necrosis factor (TNF), lipopolysaccharide (LPS; Toll-like receptor 4 (TLR4) ligand), and polyinosinic: polycytidylic acid (pIC; TLR3 ligand). Whereas induction of proinflammatory genes such as interleukin-8 (IL-8) required only RelA, pIgR expression was regulated by complex mechanisms that involved both RelA and RelB. Upregulation of pIgR expression by ligation of the lymphotoxin-β receptor suggested a direct role for the alternative NF-κB pathway. Inhibition of mitogen-activated protein kinases reduced the induction of IL-8, but enhanced the induction of pIgR by TNF and TLR signaling. Regulation of pIgR through unique signaling pathways could allow IECs to sustain high levels of IgA transport while limiting the proinflammatory responses

    Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers

    Get PDF
    Pattern recognition underpins innate immunity; the accurate identification of danger, including infection, injury, or tumor, is key to an appropriately targeted immune response. Pathogen detection is increasingly well defined mechanistically, but the discrimination of endogenous inflammatory triggers remains unclear. Tenascin-C, a matrix protein induced upon tissue damage and expressed by tumors, activates toll-like receptor 4 (TLR4)-mediated sterile inflammation. Here we map three sites within tenascin-C that directly and cooperatively interact with TLR4. We also identify a conserved inflammatory epitope in related proteins from diverse families, and demonstrate that its presence targets molecules for TLR detection, while its absence enables escape of innate immune surveillance. These data reveal a unique molecular code that defines endogenous proteins as inflammatory stimuli by marking them for recognition by TLRs

    Autophagy acts through TRAF3 and RELB to regulate gene expression via antagonism of SMAD proteins

    Get PDF
    Macroautophagy can regulate cell signalling and tumorigenesis via elusive molecular mechanisms. We establish a RAS mutant cancer cell model where the autophagy gene ATG5 is dispensable in A549 cells in vitro, yet promotes tumorigenesis in mice. ATG5 represses transcriptional activation by the TGFβ-SMAD gene regulatory pathway. However, autophagy does not terminate cytosolic signal transduction by TGFβ. Instead, we use proteomics to identify selective degradation of the signalling scaffold TRAF3. TRAF3 autophagy is driven by RAS and results in activation of the NF-κB family member RELB. We show that RELB represses TGFβ target promoters independently of DNA binding at NF-κB recognition sequences, instead binding with SMAD family member(s) at SMAD-response elements. Thus, autophagy antagonises TGFβ gene expression. Finally, autophagy-deficient A549 cells regain tumorigenicity upon SMAD4 knockdown. Thus, at least in this setting, a physiologic function for autophagic regulation of gene expression is tumour growth

    Chromosome conformation signatures define predictive markers of inadequate response to methotrexate in early rheumatoid arthritis

    Get PDF
    The authors would like to thank members of OBD Reference Facility Benjamin Foulkes, Chloe Bird, Emily Corfeld and Matthew Salter for expedient processing of clinical samples on the EpiSwitch™ platform and Magdalena Jeznach and Willem Westra for help with preparation of the manuscript. The study employed samples from the SERA Biobank used with permission and approval of the SERA Approval Group. We gratefully acknowledge the invaluable contribution of the clinicians and operating team in SERA. We would also like to thank Prof. Raju Kucherlapati (Harvard Medical School), and Prof. Jane Mellor (Oxford Univ.), Prof. John O’Shea (National Institute of Health) and Prof. John Isaacs (New Castle Univ.) for their independent and critical review of our study. A list of Scottish Early Rheumatoid Arthritis (SERA) inception cohort investigators is provided in Additional fle 1: Additional Note. Funding This work was funded by Oxford BioDynamics.Peer reviewedPublisher PD

    Nonmonotonic Photostability of BA2MAn-1PbnI3 n+1Homologous Layered Perovskites

    No full text
    Layered lead halide perovskites (2D LHPs) are attracting considerable attention as a promising material for a new generation of solar cell devices. LHPs have been presented as a more stable alternative to the more widespread 3D bulk perovskite materials; however, a critical analysis of their photostability is still lacking. In this work, we perform a comparative study between BA2MAn-1PbnI3n+1 (BA-butylammonium and MA-methylammonium) 2D LHPs with different dimensionalities (n = 1-3) and MAPbI3 3D perovskites. We compare different stability testing protocols including photometrical determination of iodine-containing products in nonpolar solvents, X-ray diffraction, and photoluminescence (PL) spectroscopy. The resulting trends of the photostability in an inert atmosphere based on PL spectroscopy measurements demonstrate a nonmonotonic dependence of the degradation rate on the perovskite layer thickness n with a "stability island"at n ≥ 3, which is caused by a combination of antibate factors of electronic structures and chemical compositions in the family of 2D perovskites. We also identify a critical oxygen concentration in the surrounding environment that affects the mechanism and strongly enhances the rate of layered perovskite photodegradation

    MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    No full text
    Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC). Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51); the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively
    corecore