26 research outputs found
Effect of Three Types of Ion Beam Irradiation on Gerbera (Gerbera hybrida) In Vitro Shoots with Mutagenesis Efficiency
Gerbera in vitro shoots were irradiated using three types of ion beams with different line energy transfers (LETs) to investigate the effective LET and absorbed doses for mutagenesis. Furthermore, genomic mutation analyses were conducted on the obtained mutants. Survival rate analysis showed a lower lethal dose 50% (LD50) with ion beams with higher LETs. Trait/morphological mutations exhibited changes in the color and shape of petals and male sterility. Irradiation conditions with the highest growth change and trait/morphological mutation rates in each ion were C irradiation at 10 Gy, Ar irradiation at 5 Gy, and Fe irradiation at 5 Gy, with a range of absorbed dose of around LD50 to about 10 Gy lower. The highest trait/morphological mutation rate was 14.1% with Ar irradiation at 5 Gy, which was one of the criteria for ion beam irradiation of gerbera in vitro shoots. Furthermore, the genomic mutation in the flower color, petal shape, and male sterile mutants were confirmed by genotype analysis using Genotyping by Random Amplicon Sequencing-Direct technology. This is the first study to report the efficient production of gerbera mutants that could be analyzed. Our findings may lead to more efficient gerbera mutant production and analysis technology
Effect of Three Types of Ion Beam Irradiation on Gerbera (Gerbera hybrida) In Vitro Shoots with Mutagenesis Efficiency
Gerbera in vitro shoots were irradiated using three types of ion beams with different line energy transfers (LETs) to investigate the effective LET and absorbed doses for mutagenesis. Furthermore, genomic mutation analyses were conducted on the obtained mutants. Survival rate analysis showed a lower lethal dose 50% (LD50) with ion beams with higher LETs. Trait/morphological mutations exhibited changes in the color and shape of petals and male sterility. Irradiation conditions with the highest growth change and trait/morphological mutation rates in each ion were C irradiation at 10 Gy, Ar irradiation at 5 Gy, and Fe irradiation at 5 Gy, with a range of absorbed dose of around LD50 to about 10 Gy lower. The highest trait/morphological mutation rate was 14.1% with Ar irradiation at 5 Gy, which was one of the criteria for ion beam irradiation of gerbera in vitro shoots. Furthermore, the genomic mutation in the flower color, petal shape, and male sterile mutants were confirmed by genotype analysis using Genotyping by Random Amplicon Sequencing-Direct technology. This is the first study to report the efficient production of gerbera mutants that could be analyzed. Our findings may lead to more efficient gerbera mutant production and analysis technology
RESEARCH Open Access
Clinical results of a surgical technique using endobuttons for complete tendon tear of pectoralis major muscle: report of five case
Reconstruction and Regulation of the Central Catabolic Pathway in the Thermophilic Propionate-Oxidizing Syntroph Pelotomaculum thermopropionicum
Obligate anaerobic bacteria fermenting volatile fatty acids in syntrophic association with methanogenic archaea share the intermediate bottleneck step in organic-matter decomposition. These organisms (called syntrophs) are biologically significant in terms of their growth at the thermodynamic limit and are considered to be the ideal model to address bioenergetic concepts. We conducted genomic and proteomic analyses of the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum to obtain the genetic basis for its central catabolic pathway. Draft sequencing and subsequent targeted gap closing identified all genes necessary for reconstructing its propionate-oxidizing pathway (i.e., methylmalonyl coenzyme A pathway). Characteristics of this pathway include the following. (i) The initial two steps are linked to later steps via transferases. (ii) Each of the last three steps can be catalyzed by two different types of enzymes. It was also revealed that many genes for the propionate-oxidizing pathway, except for those for propionate coenzyme A transferase and succinate dehydrogenase, were present in an operon-like cluster and accompanied by multiple promoter sequences and a putative gene for a transcriptional regulator. Proteomic analysis showed that enzymes in this pathway were up-regulated when grown on propionate; of these enzymes, regulation of fumarase was the most stringent. We discuss this tendency of expression regulation based on the genetic organization of the open reading frame cluster. Results suggest that fumarase is the central metabolic switch controlling the metabolic flow and energy conservation in this syntroph