32 research outputs found

    Scientific Opinion on the evaluation of the safety in use of Yohimbe (Pausinystalia yohimbe (K. Schum.) Pierre ex Beille)

    Get PDF
    The Panel on Food Additives and Nutrient Sources added to Food provides a scientific opinion evaluating the safety in use of yohimbe bark and its preparations originating from Yohimbe (Pausinystalia yohimbe (K. Schum.) Pierre ex Beille when used in food, e.g. in food supplements. The bark of the plant contains a number of indole alkaloids of biological relevance and preparations of yohimbe bark have been traditionally used as general tonic, performance enhancer and as an aphrodisiac. Food supplements containing yohimbe bark preparations are available nowadays, especially via internet retail. Yohimbine, the major alkaloid of yohimbe bark and raubasine, another alkaloid occurring in lower concentrations in the bark, are used as active ingredients in a number of medicinal products for which adverse effects are described. The Panel reviewed the available scientific data on a possible association between the intake of yohimbe bark and its preparations and potential harmful effects on health. When those data were not available, priority was given to yohimbine, as the only alkaloid for which occurrence had been shown and quantified in food supplements containing yohimbe bark. The Panel concluded that the chemical and toxicological characterisation of yohimbe bark and its preparations for use in food are not adequate to conclude on their safety as ingredients of food, e.g. in food supplements. Thus the Panel could not provide advice on a daily intake of yohimbe bark and its preparations that do not give rise to concerns about harmful effects to health. An estimation of exposure to yohimbine from food supplements was performed showing that theoretical maximum daily intake may exceed the maximum approved daily dose of yohimbine from use as a medicinal product

    Soil type influences crop mineral composition in Malawi

    Get PDF
    Food supply and composition data can be combined to estimate micronutrient intakes and deficiency risks among populations. These estimates can be improved by using local crop composition data that can capture environmental influences including soil type. This study aimed to provide spatially resolved crop composition data for Malawi, where information is currently limited. Six hundred and fifty-two plant samples, representing 97 edible food items, were sampled from N150 sites in Malawi between 2011 and 2013. Samples were analysed by ICP-MS for up to 58 elements, including the essential minerals calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se) and zinc (Zn). Maize grain Ca, Cu, Fe, Mg, Se and Zn concentrations were greater from plants grown on calcareous soils than those from the more widespread low-pH soils. Leafy vegetables from calcareous soils had elevated leaf Ca, Cu, Fe and Se concentrations, but lower Zn concentrations. Several foods were found to accumulate high levels of Se, including the leaves of Moringa, a crop not previously been reported in East African food composition data sets. New estimates of national dietary mineral supplies were obtained for non-calcareous and calcareous soils. High risks of Ca (100%), Se (100%) and Zn (57%) dietary deficiencies are likely on non-calcareous soils. Deficiency risks on calcareous soils are high for Ca (97%), but lower for Se (34%) and Zn (31%). Risks of Cu, Fe and Mg deficiencies appear to be low on the basis of dietary supply levels
    corecore