158 research outputs found
Partisan Asymmetries in Online Political Activity
We examine partisan differences in the behavior, communication patterns and
social interactions of more than 18,000 politically-active Twitter users to
produce evidence that points to changing levels of partisan engagement with the
American online political landscape. Analysis of a network defined by the
communication activity of these users in proximity to the 2010 midterm
congressional elections reveals a highly segregated, well clustered partisan
community structure. Using cluster membership as a high-fidelity (87% accuracy)
proxy for political affiliation, we characterize a wide range of differences in
the behavior, communication and social connectivity of left- and right-leaning
Twitter users. We find that in contrast to the online political dynamics of the
2008 campaign, right-leaning Twitter users exhibit greater levels of political
activity, a more tightly interconnected social structure, and a communication
network topology that facilitates the rapid and broad dissemination of
political information.Comment: 17 pages, 10 figures, 6 table
Consensus clustering in complex networks
The community structure of complex networks reveals both their organization
and hidden relationships among their constituents. Most community detection
methods currently available are not deterministic, and their results typically
depend on the specific random seeds, initial conditions and tie-break rules
adopted for their execution. Consensus clustering is used in data analysis to
generate stable results out of a set of partitions delivered by stochastic
methods. Here we show that consensus clustering can be combined with any
existing method in a self-consistent way, enhancing considerably both the
stability and the accuracy of the resulting partitions. This framework is also
particularly suitable to monitor the evolution of community structure in
temporal networks. An application of consensus clustering to a large citation
network of physics papers demonstrates its capability to keep track of the
birth, death and diversification of topics.Comment: 11 pages, 12 figures. Published in Scientific Report
Router-level community structure of the Internet Autonomous Systems
The Internet is composed of routing devices connected between them and
organized into independent administrative entities: the Autonomous Systems. The
existence of different types of Autonomous Systems (like large connectivity
providers, Internet Service Providers or universities) together with
geographical and economical constraints, turns the Internet into a complex
modular and hierarchical network. This organization is reflected in many
properties of the Internet topology, like its high degree of clustering and its
robustness.
In this work, we study the modular structure of the Internet router-level
graph in order to assess to what extent the Autonomous Systems satisfy some of
the known notions of community structure. We show that the modular structure of
the Internet is much richer than what can be captured by the current community
detection methods, which are severely affected by resolution limits and by the
heterogeneity of the Autonomous Systems. Here we overcome this issue by using a
multiresolution detection algorithm combined with a small sample of nodes. We
also discuss recent work on community structure in the light of our results
Combined node and link partitions method for finding overlapping communities in complex networks
Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures
Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data
Determining the functional structure of biological networks is a central goal
of systems biology. One approach is to analyze gene expression data to infer a
network of gene interactions on the basis of their correlated responses to
environmental and genetic perturbations. The inferred network can then be
analyzed to identify functional communities. However, commonly used algorithms
can yield unreliable results due to experimental noise, algorithmic
stochasticity, and the influence of arbitrarily chosen parameter values.
Furthermore, the results obtained typically provide only a simplistic view of
the network partitioned into disjoint communities and provide no information of
the relationship between communities. Here, we present methods to robustly
detect coregulated and functionally enriched gene communities and demonstrate
their application and validity for Escherichia coli gene expression data.
Applying a recently developed community detection algorithm to the network of
interactions identified with the context likelihood of relatedness (CLR)
method, we show that a hierarchy of network communities can be identified.
These communities significantly enrich for gene ontology (GO) terms, consistent
with them representing biologically meaningful groups. Further, analysis of the
most significantly enriched communities identified several candidate new
regulatory interactions. The robustness of our methods is demonstrated by
showing that a core set of functional communities is reliably found when
artificial noise, modeling experimental noise, is added to the data. We find
that noise mainly acts conservatively, increasing the relatedness required for
a network link to be reliably assigned and decreasing the size of the core
communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1
was not uploaded but is available by contacting the author. 27 pages, 5
figures, 15 supplementary file
Trust and distrust in contradictory information transmission
We analyse the problem of contradictory information distribution in networks of agents with positive and negative trust. The networks of interest are built by ranked agents with different epistemic attitudes. In this context, positive trust is a property of the communication between agents required when message passing is executed bottom-up in the hierarchy, or as a result of a sceptic agent checking information. These two situations are associated with a confirmation procedure that has an epistemic cost. Negative trust results from refusing verification, either of contradictory information or because of a lazy attitude. We offer first a natural deduction system called SecureNDsim to model these interactions and consider some meta-theoretical properties of its derivations. We then implement it in a NetLogo simulation to test experimentally its formal properties. Our analysis concerns in particular: conditions for consensus-reaching transmissions; epistemic costs induced by confirmation and rejection operations; the influence of ranking of the initially labelled nodes on consensus and costs; complexity results
Ethnicity and Population Structure in Personal Naming Networks
Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how 'naming networks', constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply 'emerge' from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new understandings of migration, identity, integration and social interaction across the world
Metrics matter in community detection
We present a critical evaluation of normalized mutual information (NMI) as an
evaluation metric for community detection. NMI exaggerates the leximin method's
performance on weak communities: Does leximin, in finding the trivial
singletons clustering, truly outperform eight other community detection
methods? Three NMI improvements from the literature are AMI, rrNMI, and cNMI.
We show equivalences under relevant random models, and for evaluating community
detection, we advise one-sided AMI under the model
(all partitions of nodes). This work seeks (1) to start a conversation on
robust measurements, and (2) to advocate evaluations which do not give "free
lunch"
- …
