5 research outputs found

    Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics

    Get PDF
    Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO) cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology

    Stacking of SVMs for Classifying Intangible Cultural Heritage Images

    No full text
    International audienceOur investigation aims at classifying images of the intangible cultural heritage (ICH) in the Mekong Delta, Vietnam. We collect an images dataset of 17 ICH categories and manually annotate them. The comparative study of the ICH image classification is done by the support vector machines (SVM) and many popular vision approaches including the handcrafted features such as the scale-invariant feature transform (SIFT) and the bag-of-words (BoW) model, the histogram of oriented gradients (HOG), the GIST and the automated deep learning of invariant features like VGG19, ResNet50, Inception v3, Xception. The numerical test results on 17 ICH dataset show that SVM models learned from Inception v3 and Xception features give good accuracy of 61.54% and 62.89% respectively. We propose to stack SVM models using different visual features to improve the classification result performed by any single one. Triplets (SVM-Xception, SVM-Inception-v3, SVM-VGG19), (SVM-Xception, SVM-Inception-v3, SVM-SIFT-BoW) achieve 65.32% of the classification correctness
    corecore