116 research outputs found

    Role of Hsp70 ATPase Domain Intrinsic Dynamics and Sequence Evolution in Enabling its Functional Interactions with NEFs

    Get PDF
    Catalysis of ADP-ATP exchange by nucleotide exchange factors (NEFs) is central to the activity of Hsp70 molecular chaperones. Yet, the mechanism of interaction of this family of chaperones with NEFs is not well understood in the context of the sequence evolution and structural dynamics of Hsp70 ATPase domains. We studied the interactions of Hsp70 ATPase domains with four different NEFs on the basis of the evolutionary trace and co-evolution of the ATPase domain sequence, combined with elastic network modeling of the collective dynamics of the complexes. Our study reveals a subtle balance between the intrinsic (to the ATPase domain) and specific (to interactions with NEFs) mechanisms shared by the four complexes. Two classes of key residues are distinguished in the Hsp70 ATPase domain: (i) highly conserved residues, involved in nucleotide binding, which mediate, via a global hinge-bending, the ATPase domain opening irrespective of NEF binding, and (ii) not-conserved but co-evolved and highly mobile residues, engaged in specific interactions with NEFs (e.g., N57, R258, R262, E283, D285). The observed interplay between these respective intrinsic (pre-existing, structure-encoded) and specific (co-evolved, sequence-dependent) interactions provides us with insights into the allosteric dynamics and functional evolution of the modular Hsp70 ATPase domain

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.

    Get PDF
    Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs

    Current methods in structural proteomics and its applications in biological sciences

    Full text link

    Baunutzungskosten im Schulbau. Betriebskosten

    No full text
    TIB: L arc 462j/RN 2247 (61)+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Tailoring of the PS surface with low energy ions: Relevance to growth and adhesion of noble metals

    No full text
    Ion–polymer interaction induces different phenomena in the near surface layer of polymers, and promotes its adhesion to metals. Using XPS, TEM and AFM, polystyrene surface was examined after 1 keV ion-beam treatments with oxygen, nitrogen and argon ions in the ion fluence range from 1012 to 1016 cm?2 to clarify the following points: chemical reaction after treatment in vacuum and after exposure to air, identification of adsorption-relevant species for metal atoms, formation of cross-links in the outermost polymer layer. The early stages of metal–polymer interface formation during metallization play a crucial role in the metal–polymer adhesion. Therefore, the influence of the ion fluence and ion chemistry on the condensation of noble metals, film growth and peel strength were measured. The peel strength showed a maximum at a certain fluence depending on ion chemistry. For example, the surface treatment with very low fluence of oxygen ions improved the adhesion between copper and polystyrene by two orders of magnitude without significantly increasing the surface roughness measured with AFM. The locus of failure changed at the same time from interfacial failure for untreated polymer surfaces to cohesive failure in the polymer for modified surfaces. A multilayer model of the metal–polymer interface after ion treatment is suggested.<br/
    • 

    corecore