25 research outputs found
Molecular dynamic simulation of a homogeneous bcc -> hcp transition
We have performed molecular dynamic simulations of a Martensitic bcc->hcp
transformation in a homogeneous system. The system evolves into three
Martensitic variants, sharing a common nearest neighbor vector along a bcc
direction, plus an fcc region. Nucleation occurs locally, followed by
subsequent growth. We monitor the time-dependent scattering S(q,t) during the
transformation, and find anomalous, Brillouin zone-dependent scattering similar
to that observed experimentally in a number of systems above the transformation
temperature. This scattering is shown to be related to the elastic strain
associated with the transformation, and is not directly related to the phonon
response.Comment: 11 pages plus 8 figures (GIF format); to appear in Phys. Rev.
Two-band second moment model and an interatomic potential for caesium
A semi-empirical formalism is presented for deriving interatomic potentials
for materials such as caesium or cerium which exhibit volume collapse phase
transitions. It is based on the Finnis-Sinclair second moment tight binding
approach, but incorporates two independent bands on each atom. The potential is
cast in a form suitable for large-scale molecular dynamics, the computational
cost being the evaluation of short ranged pair potentials. Parameters for a
model potential for caesium are derived and tested
First-principles study of the structural energetics of PdTi and PtTi
The structural energetics of PdTi and PtTi have been studied using
first-principles density-functional theory with pseudopotentials and a
plane-wave basis. We predict that in both materials, the experimentally
reported orthorhombic phase will undergo a low-temperature phase
transition to a monoclinic ground state. Within a soft-mode framework,
we relate the structure to the cubic structure, observed at high
temperature, and the structure to via phonon modes strongly
coupled to strain. In contrast to NiTi, the structure is extremely close
to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely
transition mechanisms in the present case.Comment: 8 pages 5 figure
Temperature dependence in interatomic potentials and an improved potential for Ti
The process of deriving an interatomic potentials represents an attempt to
integrate out the electronic degrees of freedom from the full quantum
description of a condensed matter system. In practice it is the derivatives of
the interatomic potentials which are used in molecular dynamics, as a model for
the forces on a system. These forces should be the derivative of the free
energy of the electronic system, which includes contributions from the entropy
of the electronic states. This free energy is weakly temperature dependent, and
although this can be safely neglected in many cases there are some systems
where the electronic entropy plays a significant role. Here a method is
proposed to incorporate electronic entropy in the Sommerfeld approximation into
empirical potentials. The method is applied as a correction to an existing
potential for titanium. Thermal properties of the new model are calculated, and
a simple method for fixing the melting point and solid-solid phase transition
temperature for existing models fitted to zero temperature data is presented.Comment: CCP 201
Understanding high pressure hydrogen with a hierarchical machine-learned potential
The hydrogen phase diagram has a number of unusual features which are
generally well reproduced by density functional calculations. Unfortunately,
these calculations fail to provide good physical insights into why those
features occur. In this paper, we parameterize a model potential for molecular
hydrogen which permits long and large simulations. The model shows excellent
reproduction of the phase diagram, including the broken-symmetry Phase II, an
efficiently-packed phase III and the maximum in the melt curve. It also gives
an excellent reproduction of the vibrational frequencies, including the maximum
in the vibrational frequency and negative thermal expansion. By
detailed study of lengthy molecular dynamics, we give intuitive explanations
for observed and calculated properties. All solid structures approximate to
hexagonal close packed, with symmetry broken by molecular orientation. At high
pressure, Phase I shows significant short-ranged correlations between molecular
orientations. The turnover in Raman frequency is due to increased coupling
between neighboring molecules, rather than weakening of the bond. The liquid is
denser than the close-packed solid because, at molecular separations below
2.3\AA, the favoured relative orientation switches from
quadrupole-energy-minimising to steric-repulsion-minimising. The latter allows
molecules to get closer together, without atoms getting closer but this cannot
be achieved within the constraints of a close-packed layer
The minimal supercells approach for ab-initio calculation in 2D alloying transition metal dichalcoginides with special quasi-random structure
Density functional theory (DFT) is used to investigate MoS _2 and WS _2 monolayers, which are direct bandgap semiconductors. We study alloying between MoS _2 and WS _2 by using special quasi-random structure (SQS), through a comparison of the computed pair distribution functions with various sizes of supercells. Our calculations show that a model 3 × 3 × 1 supercell structure of pseudobinary alloy Mo _1 _−x W _x S _2 can be correctly performed for energy and electronic band structure calculations. DFT is combined with SQS and reveals that alteration of the W concentration supports the band edges and energy gap. The electronic structure of Mo _1 _−x W _x S _2 clearly supports the results from the experimental observation as well as Monte Carlo simulation. Consequently, our model suggests that the generated alloy monolayer with small supercells via SQS can clearly explain the behaviour of this material, using a low computational time but achieving good agreement with the experiment