253 research outputs found

    Phase-dependent which-way information

    Full text link
    We introduce a new observable for reading out a which-way detector in a Young-type interferometer whose eigenstates either contain full which-way information or none at all. We calculate the which-way knowledge K that can be retrieved from this observable and find that K depends on the phase difference \delta that the interfering object accumulates on its way from either slit to the detector. In particular, it turns out that K(\delta) has an upper bound of 1, almost independent of the visibility V of the interference pattern generated by the interfering object on a screen, which is in marked contrast to the well-known inequality K^2 + V^2 <= 1 (cf. B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996)).Comment: 7 pages, 4 figure

    Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: A case study of Globigerinoides ruber

    No full text
    B/Ca ratios in foraminifera have attracted considerable scientific attention as a proxy for past ocean carbonate system. However, the carbonate system controls on B/Ca ratios are not straightforward, with ?[ inline image] ([ inline image]in situ – [ inline image]at saturation) correlating best with B/Ca ratios in benthic foraminifera, rather than pH, inline image, or inline image (as a simple model of boron speciation in seawater and incorporation into CaCO3 would predict). Furthermore, culture experiments have shown that in planktic foraminifera properties such as salinity and [B]sw can have profound effects on B/Ca ratios beyond those predicted by simple partition coefficients. Here, we investigate the controls on B/Ca ratios in G. ruber via a combination of culture experiments and core-top measurements, and add to a growing body of evidence that suggests B/Ca ratios in symbiont-bearing foraminiferal carbonate are not a straightforward proxy for past seawater carbonate system conditions. We find that while B/Ca ratios in culture experiments covary with pH, in open ocean sediments this relationship is not seen. In fact, our B/Ca data correlate best with [ inline image] (a previously undocumented association) and in most regions, salinity. These findings might suggest a precipitation rate or crystallographic control on boron incorporation into foraminiferal calcite. Regardless, our results underscore the need for caution when attempting to interpret B/Ca records in terms of the ocean carbonate system, at the very least in the case of mixed-layer planktic foraminifera

    Avoiding Coral Reef Functional Collapse Requires Local and Global Action

    Get PDF
    oral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification [1]. While the abundance of coral has declined in recent decades [2, 3], the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation [4]. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration [5, 6]. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services

    Systematic identification of abundant A-to-I editing sites in the human transcriptome

    Full text link
    RNA editing by members of the double-stranded RNA-specific ADAR family leads to site-specific conversion of adenosine to inosine (A-to-I) in precursor messenger RNAs. Editing by ADARs is believed to occur in all metazoa, and is essential for mammalian development. Currently, only a limited number of human ADAR substrates are known, while indirect evidence suggests a substantial fraction of all pre-mRNAs being affected. Here we describe a computational search for ADAR editing sites in the human transcriptome, using millions of available expressed sequences. 12,723 A-to-I editing sites were mapped in 1,637 different genes, with an estimated accuracy of 95%, raising the number of known editing sites by two orders of magnitude. We experimentally validated our method by verifying the occurrence of editing in 26 novel substrates. A-to-I editing in humans primarily occurs in non-coding regions of the RNA, typically in Alu repeats. Analysis of the large set of editing sites indicates the role of editing in controlling dsRNA stability.Comment: Pre-print version. See http://dx.doi.org/10.1038/nbt996 for a reprin

    Wavefront error of PHI/HRT on Solar Orbiter at various heliocentric distances

    Full text link
    We use wavefront sensing to characterise the image quality of the the High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (SO/PHI) data products during the second remote sensing window of the Solar Orbiter (SO) nominal mission phase. Our ultimate aims are to reconstruct the HRT data by deconvolving with the HRT point spread function (PSF) and to correct for the effects of optical aberrations on the data. We use a pair of focused--defocused images to compute the wavefront error and derive the PSF of HRT by means of a phase diversity (PD) analysis. The wavefront error of HRT depends on the orbital distance of SO to the Sun. At distances >0.5>0.5\,au, the wavefront error is small, and stems dominantly from the inherent optical properties of HRT. At distances <0.5<0.5\,au, the thermo-optical effect of the Heat Rejection Entrance Window (HREW) becomes noticeable. We develop an interpolation scheme for the wavefront error that depends on the thermal variation of the HREW with the distance of SO to the Sun. We also introduce a new level of image reconstruction, termed `aberration correction', which is designed to reduce the noise caused by image deconvolution while removing the aberrations caused by the HREW. The computed PSF via phase diversity significantly reduces the degradation caused by the HREW in the near-perihelion HRT data. In addition, the aberration correction increases the noise by a factor of only 1.451.45 compared to the factor of 33 increase that results from the usual PD reconstructions

    Stable Photosymbiotic Relationship under CO2-Induced Acidification in the Acoel Worm Symsagittifera Roscoffensis

    Get PDF
    As a consequence of anthropogenic CO2 emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO2 increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO2 with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO2 up to 54 K Β΅atm. Some sub-lethal bleaching is only observed at pCO2 up to 270 K Β΅atm when seawater is saturated by CO2. This indicates that photosymbiosis can be resistant to high pCO2. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO2 observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding)

    A Survey of Genomic Traces Reveals a Common Sequencing Error, RNA Editing, and DNA Editing

    Get PDF
    While it is widely held that an organism's genomic information should remain constant, several protein families are known to modify it. Members of the AID/APOBEC protein family can deaminate DNA. Similarly, members of the ADAR family can deaminate RNA. Characterizing the scope of these events is challenging. Here we use large genomic data sets, such as the two billion sequences in the NCBI Trace Archive, to look for clusters of mismatches of the same type, which are a hallmark of editing events caused by APOBEC3 and ADAR. We align 603,249,815 traces from the NCBI trace archive to their reference genomes. In clusters of mismatches of increasing size, at least one systematic sequencing error dominates the results (G-to-A). It is still present in mismatches with 99% accuracy and only vanishes in mismatches at 99.99% accuracy or higher. The error appears to have entered into about 1% of the HapMap, possibly affecting other users that rely on this resource. Further investigation, using stringent quality thresholds, uncovers thousands of mismatch clusters with no apparent defects in their chromatograms. These traces provide the first reported candidates of endogenous DNA editing in human, further elucidating RNA editing in human and mouse and also revealing, for the first time, extensive RNA editing in Xenopus tropicalis. We show that the NCBI Trace Archive provides a valuable resource for the investigation of the phenomena of DNA and RNA editing, as well as setting the stage for a comprehensive mapping of editing events in large-scale genomic datasets

    N-Cadherin in Neuroblastoma Disease: Expression and Clinical Significance

    Get PDF
    One of the first and most important steps in the metastatic cascade is the loss of cell-cell and cell-matrix interactions. N-cadherin, a crucial mediator of homotypic and heterotypic cell-cell interactions, might play a central role in the metastasis of neuroblastoma (NB), a solid tumor of neuroectodermal origin. Using Reverse Transcription Quantitative PCR (RT-qPCR), Western blot, immunocytochemistry and Tissue MicroArrays (TMA) we demonstrate the expression of N-cadherin in neuroblastoma tumors and cell lines. All neuroblastic tumors (nβ€Š=β€Š356) and cell lines (nβ€Š=β€Š10) expressed various levels of the adhesion protein. The N-cadherin mRNA expression was significantly lower in tumor samples from patients suffering metastatic disease. Treatment of NB cell lines with the N-cadherin blocking peptide ADH-1 (Exherin, Adherex Technologies Inc.), strongly inhibited tumor cell proliferation in vitro by inducing apoptosis. Our results suggest that N-cadherin signaling may play a role in neuroblastoma disease, marking involvement of metastasis and determining neuroblastoma cell viability

    Jack of All Trades, Master of All: A Positive Association between Habitat Niche Breadth and Foraging Performance in Pit-Building Antlion Larvae

    Get PDF
    Species utilizing a wide range of resources are intuitively expected to be less efficient in exploiting each resource type compared to species which have developed an optimal phenotype for utilizing only one or a few resources. We report here the results of an empirical study whose aim was to test for a negative association between habitat niche breadth and foraging performance. As a model system to address this question, we used two highly abundant species of pit-building antlions varying in their habitat niche breadth: the habitat generalist Myrmeleon hyalinus, which inhabits a variety of soil types but occurs mainly in sandy soils, and the habitat specialist Cueta lineosa, which is restricted to light soils such as loess. Both species were able to discriminate between the two soils, with each showing a distinct and higher preference to the soil type providing higher prey capture success and characterizing its primary habitat-of-origin. As expected, only small differences in the foraging performances of the habitat generalist were evident between the two soils, while the performance of the habitat specialist was markedly reduced in the alternative sandy soil. Remarkably, in both soil types, the habitat generalist constructed pits and responded to prey faster than the habitat specialist, at least under the temperature range of this study. Furthermore, prey capture success of the habitat generalist was higher than that of the habitat specialist irrespective of the soil type or prey ant species encountered, implying a positive association between habitat niche-breadth and foraging performance. Alternatively, C. lineosa specialization to light soils does not necessarily confer upon its superiority in utilizing such habitats. We thus suggest that habitat specialization in C. lineosa is either an evolutionary dead-end, or, more likely, that this species' superiority in light soils can only be evident when considering additional niche axes
    • …
    corecore