891 research outputs found
Floquet analysis of excitations in materials
Controlled excitation of materials can transiently induce changed or novel properties with many fundamental and technological implications. Especially, the concept of Floquet engineering and the manipulation of the electronic structure via dressing with external lasers have attracted some recent interest. Here we review the progress made in defining Floquet material properties and give a special focus on their signatures in experimental observables as well as considering recent experiments realizing Floquet phases in solid state materials. We discuss how a wide range of experiments with non-equilibrium electronic structure can be viewed by employing Floquet theory as an analysis tool providing a different view of excitations in solids
Spin and rotational symmetries in unrestricted Hartree Fock states of quantum dots
Ground state energies are obtained using the unrestricted Hartree Fock method
for up to four interacting electrons parabolically confined in a quantum dot
subject to a magnetic field. Restoring spin and rotational symmetries we
recover Hund first rule. With increasing magnetic field, crossovers between
ground states with different quantum numbers are found for fixed electron
number that are not reproduced by the unrestricted Hartree Fock approximation.
These are consistent with the ones obtained with more refined techniques. We
confirm the presence of a spin blockade due to a spin mismatch in the ground
states of three and four electrons.Comment: 16 Pages, 2 figures, accepted for publication on New Journal of
Physic
Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT
We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules
New perspectives in time-resolved laser-induced electron diffraction
Imaging the microscopic world in real space and real time is a grand challenge of science. In the landscape of time-resolved imaging techniques, laser-induced electron diffraction (LIED) has recently shown to be a promising candidate to push the frontiers of ultrafast molecular imaging. In this work, we review the main achievements of LIED research in terms of experimental results and advanced modelling. We also envision interesting perspectives toward the future advancement of time-resolved LIED imaging
A first-principles time-dependent density functional theory framework for spin and time-resolved angular-resolved photoelectron spectroscopy in periodic systems
We present a novel theoretical approach to simulate spin, time, and angular-resolved photoelectron spectroscopy (ARPES) from first-principles that is applicable to surfaces, thin films, few layer systems, and low-dimensional nanostructures. The method is based on a general formulation in the framework of time-dependent density functional theory (TDDFT) to describe the real time-evolution of electrons escaping from a surface under the effect of any external (arbitrary) laser field. By extending the so-called t-SURFF method to periodic systems one can calculate the final photoelectron spectrum by collecting the flux of the ionization current trough an analyzing surface. The resulting approach, that we named t-SURFFP, allows us to describe a wide range of irradiation conditions without any assumption on the dynamics of the ionization process allowing for pump-probe simulations on an equal footing. To illustrate the wide scope of applicability of the method we present applications to graphene, monolayer, and bilayer WSe2, and hexagonal BN (hBN) under different laser configurations
Phonon Driven Floquet Matter
The effect of electron-phonon coupling in materials can be interpreted as a dressing of the electronic structure by the lattice vibration, leading to vibrational replicas and hybridization of electronic states. In solids, a resonantly excited coherent phonon leads to a periodic oscillation of the atomic lattice in a crystal structure bringing the material into a nonequilibrium electronic configuration. Periodically oscillating quantum systems can be understood in terms of Floquet theory, which has a long tradition in the study of semiclassical light-matter interaction. Here, we show that the concepts of Floquet analysis can be applied to coherent lattice vibrations. This coupling leads to phonon-dressed quasi-particles imprinting specific signatures in the spectrum of the electronic structure. Such dressed electronic states can be detected by time- and angular-resolved photoelectron spectroscopy (ARPES) manifesting as sidebands to the equilibrium band structure. Taking graphene as a paradigmatic material with strong electron-phonon interaction and nontrivial topology, we show how the phonon-dressed states display an intricate sideband structure revealing the electron-phonon coupling at the Brillouin zone center and topological ordering of the Dirac bands. We demonstrate that if time-reversal symmetry is broken by the coherent lattice perturbations a topological phase transition can be induced. This work establishes that the recently demonstrated concept of light-induced nonequilibrium Floquet phases can also be applied when using coherent phonon modes for the dynamical control of material properties
Monitoring Electron-Photon Dressing in WSe2
Optical pumping of solids creates a nonequilibrium electronic structure where electrons and photons combine to form quasiparticles of dressed electronic states. The resulting shift of electronic levels is known as the optical Stark effect, visible as a red shift in the optical spectrum. Here we show that in a pump-probe setup we can uniquely define a nonequilibrium quasiparticle bandstructure that can be directly measurable with photoelectron spectroscopy. The dynamical photon-dressing (and undressing) of the many-body electronic states can be monitored by pump-probe time and angular-resolved photoelectron spectroscopy (tr-ARPES) as the photon-dressed bandstructure evolves in time depending on the pump-probe pulse overlap. The computed tr-ARPES spectrum agrees perfectly with the quasi-energy spectrum of Floquet theory at maximum overlap and goes to the equilibrium bandstructure as the pump-probe overlap goes to zero. Additionally, we show how this time-dependent nonequilibrium quasiparticle structure can be understood to be the bandstructure underlying the optical Stark effect. The extension to spin-resolved ARPES can be used to predict asymmetric dichroic response linked to the valley selective optical excitations in monolayer transition metal dichalcogenides (TMDs). These results establish the photon dressed nonequilibrium bandstructures as the underlying quasiparticle structure of light-driven steady-state quantum phases of matter
Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries
Absorbing boundaries are frequently employed in real-time propagation of the Schrödinger equation to remove spurious reflections and efficiently emulate outgoing boundary conditions. These conditions are a fundamental ingredient for the calculation of observables involving infinitely extended continuum states in finite volumes. In the literature, several boundary absorbers have been proposed. They mostly fall into three main families: mask function absorbers, complex absorbing potentials, and exterior complex-scaled potentials. To date none of the proposed absorbers is perfect, and all present a certain degree of reflections. Characterization of such reflections is thus a critical task with strong implications for time-dependent simulations of atoms and molecules. We introduce a method to evaluate the reflection properties of a given absorber and present a comparison of selected samples for each family of absorbers. Further, we discuss the connections between members of each family and show how the same reflection curves can be obtained with very different absorption schemes
Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra
Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations
- …