116 research outputs found
Gene transfer: anything goes in plant mitochondria
Parasitic plants and their hosts have proven remarkably adept at exchanging fragments of mitochondrial DNA. Two recent studies provide important mechanistic insights into the pattern, process and consequences of horizontal gene transfer, demonstrating that genes can be transferred in large chunks and that gene conversion between foreign and native genes leads to intragenic mosaicism. A model involving duplicative horizontal gene transfer and differential gene conversion is proposed as a hitherto unrecognized source of genetic diversity
PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships
<p>Abstract</p> <p>Background</p> <p>Phylogenies, i.e., the evolutionary histories of groups of taxa, play a major role in representing the interrelationships among biological entities. Many software tools for reconstructing and evaluating such phylogenies have been proposed, almost all of which assume the underlying evolutionary history to be a tree. While trees give a satisfactory first-order approximation for many families of organisms, other families exhibit evolutionary mechanisms that cannot be represented by trees. Processes such as horizontal gene transfer (HGT), hybrid speciation, and interspecific recombination, collectively referred to as <it>reticulate evolutionary events</it>, result in <it>networks</it>, rather than trees, of relationships. Various software tools have been recently developed to analyze reticulate evolutionary relationships, which include SplitsTree4, LatTrans, EEEP, HorizStory, and T-REX.</p> <p>Results</p> <p>In this paper, we report on the PhyloNet software package, which is a suite of tools for analyzing reticulate evolutionary relationships, or <it>evolutionary networks</it>, which are rooted, directed, acyclic graphs, leaf-labeled by a set of taxa. These tools can be classified into four categories: (1) evolutionary network representation: reading/writing evolutionary networks in a newly devised compact form; (2) evolutionary network characterization: analyzing evolutionary networks in terms of three basic building blocks – trees, clusters, and tripartitions; (3) evolutionary network comparison: comparing two evolutionary networks in terms of topological dissimilarities, as well as fitness to sequence evolution under a maximum parsimony criterion; and (4) evolutionary network reconstruction: reconstructing an evolutionary network from a species tree and a set of gene trees.</p> <p>Conclusion</p> <p>The software package, PhyloNet, offers an array of utilities to allow for efficient and accurate analysis of evolutionary networks. The software package will help significantly in analyzing large data sets, as well as in studying the performance of evolutionary network reconstruction methods. Further, the software package supports the proposed eNewick format for compact representation of evolutionary networks, a feature that allows for efficient interoperability of evolutionary network software tools. Currently, all utilities in PhyloNet are invoked on the command line.</p
Comparative genomics of the class 4 histone deacetylase family indicates a complex evolutionary history
BACKGROUND: Histone deacetylases are enzymes that modify core histones and play key roles in transcriptional regulation, chromatin assembly, DNA repair, and recombination in eukaryotes. Three types of related histone deacetylases (classes 1, 2, and 4) are widely found in eukaryotes, and structurally related proteins have also been found in some prokaryotes. Here we focus on the evolutionary history of the class 4 histone deacetylase family. RESULTS: Through sequence similarity searches against sequenced genomes and expressed sequence tag data, we identified members of the class 4 histone deacetylase family in 45 eukaryotic and 37 eubacterial species representative of very distant evolutionary lineages. Multiple phylogenetic analyses indicate that the phylogeny of these proteins is, in many respects, at odds with the phylogeny of the species in which they are found. In addition, the eukaryotic members of the class 4 histone deacetylase family clearly display an anomalous phyletic distribution. CONCLUSION: The unexpected phylogenetic relationships within the class 4 histone deacetylase family and the anomalous phyletic distribution of these proteins within eukaryotes might be explained by two mechanisms: ancient gene duplication followed by differential gene losses and/or horizontal gene transfer. We discuss both possibilities in this report, and suggest that the evolutionary history of the class 4 histone deacetylase family may have been shaped by horizontal gene transfers
Inference of reticulate evolutionary histories by maximum likelihood: the performance of information criteria
Background: Maximum likelihood has been widely used for over three decades to infer phylogenetic trees from
molecular data. When reticulate evolutionary events occur, several genomic regions may have conflicting
evolutionary histories, and a phylogenetic network may provide a more adequate model for representing the
evolutionary history of the genomes or species. A maximum likelihood (ML) model has been proposed for this
case and accounts for both mutation within a genomic region and reticulation across the regions. However, the
performance of this model in terms of inferring information about reticulate evolution and properties that affect
this performance have not been studied.
Results: In this paper, we study the effect of the evolutionary diameter and height of a reticulation event on its
identifiability under ML. We find both of them, particularly the diameter, have a significant effect. Further, we find
that the number of genes (which can be generalized to the concept of "non-recombining genomic regions") that
are transferred across a reticulation edge affects its detectability. Last but not least, a fundamental challenge with
phylogenetic networks is that they allow an arbitrary level of complexity, giving rise to the model selection
problem. We investigate the performance of two information criteria, the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC), for addressing this problem. We find that BIC performs well in general for
controlling the model complexity and preventing ML from grossly overestimating the number of reticulation
events.
Conclusion: Our results demonstrate that BIC provides a good framework for inferring reticulate evolutionary
histories. Nevertheless, the results call for caution when interpreting the accuracy of the inference particularly for
data sets with particular evolutionary features
Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)
The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae
An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters
BACKGROUND: Horizontal gene transfer (HGT) to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid. RESULTS: Although several genes gave strongly supported conflicting trees under certain conditions, we are confident of HGT in only a single case beyond the rubisco HGT already reported. Most of the conflicts involved near neighbors connected by long branches (e.g. red algae and their secondary hosts), where phylogenetic methods are prone to mislead. However, three genes – clpP, ycf2, and rpl36 – provided strong support for taxa moving far from their organismal position. Further taxon sampling of clpP and ycf2 resulted in rejection of HGT due to long-branch attraction and a serious error in the published plastid genome sequence of Oenothera elata, respectively. A single new case, a bacterial rpl36 gene transferred into the ancestor of the cryptophyte and haptophyte plastids, appears to be a true HGT event. Interestingly, this rpl36 gene is a distantly related paralog of the rpl36 type found in other plastids and most eubacteria. Moreover, the transferred gene has physically replaced the native rpl36 gene, yet flanking genes and intergenic regions show no sign of HGT. This suggests that gene replacement somehow occurred by recombination at the very ends of rpl36, without the level and length of similarity normally expected to support recombination. CONCLUSION: The rpl36 HGT discovered in this study is of considerable interest in terms of both molecular mechanism and phylogeny. The plastid acquisition of a bacterial rpl36 gene via HGT provides the first strong evidence for a sister-group relationship between haptophyte and cryptophyte plastids to the exclusion of heterokont and alveolate plastids. Moreover, the bacterial gene has replaced the native plastid rpl36 gene by an uncertain mechanism that appears inconsistent with existing models for the recombinational basis of gene conversion
OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs
<p>Abstract</p> <p>Background</p> <p>The ancestry of mitochondria and chloroplasts traces back to separate endosymbioses of once free-living bacteria. The highly reduced genomes of these two organelles therefore contain very distant homologs that only recently have been shown to recombine inside the mitochondrial genome. Detection of gene conversion between mitochondrial and chloroplast homologs was previously impossible due to the lack of suitable computer programs. Recently, I developed a novel method and have, for the first time, discovered recurrent gene conversion between chloroplast mitochondrial genes. The method will further our understanding of plant organellar genome evolution and help identify and remove gene regions with incongruent phylogenetic signals for several genes widely used in plant systematics. Here, I implement such a method that is available in a user friendly web interface.</p> <p>Results</p> <p><monospace>OrgConv</monospace> (<b>Org</b>anellar <b>Conv</b>ersion) is a computer package developed for detection of gene conversion between mitochondrial and chloroplast homologous genes. <monospace>OrgConv</monospace> is available in two forms; source code can be installed and run on a Linux platform and a web interface is available on multiple operating systems. The input files of the feature program are two multiple sequence alignments from different organellar compartments in FASTA format. The program compares every examined sequence against the consensus sequence of each sequence alignment rather than exhaustively examining every possible combination. Making use of consensus sequences significantly reduces the number of comparisons and therefore reduces overall computational time, which allows for analysis of very large datasets. Most importantly, with the significantly reduced number of comparisons, the statistical power remains high in the face of correction for multiple tests.</p> <p>Conclusions</p> <p>Both the source code and the web interface of <monospace>OrgConv</monospace> are available for free from the <monospace>OrgConv</monospace> website <url>http://www.indiana.edu/~orgconv</url>. Although <monospace>OrgConv</monospace> has been developed with main focus on detection of gene conversion between mitochondrial and chloroplast genes, it may also be used for detection of gene conversion between any two distinct groups of homologous sequences.</p
Spillway-Induced Salmon Head Injury Triggers the Generation of Brain αII-Spectrin Breakdown Product Biomarkers Similar to Mammalian Traumatic Brain Injury
Recent advances in biomedical research have resulted in the development of specific biomarkers for diagnostic testing of disease condition or physiological risk. Of specific interest are αII-spectrin breakdown products (SBDPs), which are produced by proteolytic events in traumatic brain injury and have been used as biomarkers to predict the severity of injury in humans and other mammalian brain injury models. This study describes and demonstrates the successful use of antibody-based mammalian SBDP biomarkers to detect head injury in migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) that have been injured during passage through high-energy hydraulic environments present in spillways under different operational configurations. Mortality and injury assessment techniques currently measure only near-term direct mortality and easily observable acute injury. Injury-based biomarkers may serve as a quantitative indicator of subacute physical injury and recovery, and aid hydropower operators in evaluation of safest passage configuration and operation actions for migrating juvenile salmonids. We describe a novel application of SBDP biomarkers for head injury for migrating salmon. To our knowledge, this is the first documented cross-over use of a human molecular biomarker in a wildlife and operational risk management scenario
Sex and virulence in Escherichia coli: an evolutionary perspective
Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non-pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long-term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response
Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes
Background: Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants.
Results: In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)- PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes.
Conclusions: This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago
- …