34 research outputs found

    From Equilibrium to Steady State: The Transient Dynamics of Colloidal Liquids under Shear

    Get PDF
    We investigate stresses and particle motion during the start up of flow in a colloidal dispersion close to arrest into a glassy state. A combination of molecular dynamics simulation, mode coupling theory and confocal microscopy experiment is used to investigate the origins of the widely observed stress overshoot and (previously not reported) super-diffusive motion in the transient dynamics. A link between the macro-rheological stress versus strain curves and the microscopic particle motion is established. Negative correlations in the transient auto-correlation function of the potential stresses are found responsible for both phenomena, and arise even for homogeneous flows and almost Gaussian particle displacements.Comment: 24 pages, 14 figures, J. Phys.: Condens. Matter, in pres

    Role of structural relaxations and vibrational excitations in the high-frequency dynamics of liquids and glasses

    Full text link
    We present theoretical investigation on the high-frequency collective dynamics in liquids and glasses at microscopic length scales and terahertz frequency region based on the mode-coupling theory for ideal liquid-glass transition. We focus on recently investigated issues from inelastic-X-ray-scattering and computer-simulation studies for dynamic structure factors and longitudinal and transversal current spectra: the anomalous dispersion of the high-frequency sound velocity and the nature of the low-frequency excitation called the boson peak. It will be discussed how the sound mode interferes with other low-lying modes present in the system. Thereby, we provide a systematic explanation of the anomalous sound-velocity dispersion in systems -- ranging from high temperature liquid down to deep inside the glass state -- in terms of the contributions from the structural-relaxation processes and from vibrational excitations called the anomalous-oscillation peak (AOP). A possibility of observing negative dispersion -- the {\em decrease} of the sound velocity upon increase of the wave number -- is argued when the sound-velocity dispersion is dominated by the contribution from the vibrational dynamics. We also show that the low-frequency excitation, observable in both of the glass-state longitudinal and transversal current spectra at the same resonance frequency, is the manifestation of the AOP. As a consequence of the presence of the AOP in the transversal current spectra, it is predicted that the transversal sound velocity also exhibits the anomalous dispersion. These results of the theory are demonstrated for a model of the Lennard-Jones system.Comment: 25 pages, 22 figure

    Residual Stresses in Glasses

    Get PDF
    The history dependence of the glasses formed from flow-melted steady states by a sudden cessation of the shear rate γ˙\dot\gamma is studied in colloidal suspensions, by molecular dynamics simulations, and mode-coupling theory. In an ideal glass, stresses relax only partially, leaving behind a finite persistent residual stress. For intermediate times, relaxation curves scale as a function of γ˙t\dot\gamma t, even though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this history dependence of glasses sharing the same thermodynamic state variables, but differing static properties.Comment: submitted to Physical Revie

    Glassy dynamics in asymmetric binary mixtures of hard-spheres

    Get PDF
    The binary hard-sphere mixture is one of the simplest representations of a many-body system with competing time and length scales. This model is relevant to fundamentally understand both the structural and dynamical properties of materials, such as metallic melts, colloids, polymers and bio-based composites. It also allows us to study how different scales influence the physical behavior of a multicomponent glass-forming liquid; a question that still awaits a unified description. In this contribution, we report on distinct dynamical arrest transitions in highly asymmetric binary colloidal mixtures, namely, a single glass of big particles, in which the small species remains ergodic, and a double glass with the simultaneous arrest of both components. When the mixture approaches any glass transition, the relaxation of the collective dynamics of both species becomes coupled. In the single glass domain, spatial modulations occur due to the structure of the large spheres, a feature not observed in the two-glass domain. The relaxation of the \emph{self} dynamics of small and large particles, in contrast, become decoupled at the boundaries of both transitions; the large species always displays dynamical arrest, whereas the small ones appear arrested only in the double glass. Thus, in order to obtain a complete picture of the distinct glassy states, one needs to take into account the dynamics of both species

    Colloidal gelation and non-ergodicity transitions

    Full text link
    Within the framework of the mode coupling theory (MCT) of structural relaxation, mechanisms and properties of non-ergodicity transitions in rather dilute suspensions of colloidal particles characterized by strong short-ranged attractions are studied. Results building on the virial expansion for particles with hard cores and interacting via an attractive square well potential are presented, and their relevance to colloidal gelation is discussed.Comment: 10 pages, 4 figures; Talk at the Conference: "Unifying Concepts in Glass Physics" ICTP Trieste, September 1999; to be published in J. Phys.: Condens. Matte

    Alpha-Relaxation Processes in Binary Hard-Sphere Mixtures

    Full text link
    Molecular-dynamics simulations are presented for two correlation functions formed with the partial density fluctuations of binary hard-sphere mixtures in order to explore the effects of mixing on the evolution of glassy dynamics upon compressing the liquid into high-density states. Partial-density-fluctuation correlation functions for the two species are reported. Results for the alpha-relaxation process are quantified by parameters for the strength, the stretching, and the time scale, where the latter varies over almost four orders of magnitude upon compression. The parameters exhibit an appreciable dependence on the wave vector; and this dependence is different for the correlation function referring to the smaller and that for the larger species. These features are shown to be in semi-quantitative agreement with those calculated within the mode-coupling theory for ideal liquid-glass transitions.Comment: 14 pages, 20 figures, RevTe

    Structural Relaxation and Mode Coupling in a Simple Liquid: Depolarized Light Scattering in Benzene

    Full text link
    We have measured depolarized light scattering in liquid benzene over the whole accessible temperature range and over four decades in frequency. Between 40 and 180 GHz we find a susceptibility peak due to structural relaxation. This peak shows stretching and time-temperature scaling as known from α\alpha relaxation in glass-forming materials. A simple mode-coupling model provides consistent fits of the entire data set. We conclude that structural relaxation in simple liquids and α\alpha relaxation in glass-forming materials are physically the same. A deeper understanding of simple liquids is reached by applying concepts that were originally developed in the context of glass-transition research.Comment: submitted to New J. Phy

    Recombinant human erythropoietin in the treatment of chemotherapy-induced anemia and prevention of transfusion requirement associated with solid tumors: A randomized, controlled study

    Get PDF
    Background: Anemia is a common side effect of anticancer chemotherapy. Blood transfusion, previously the only available treatment for chemotherapy-induced anemia, may result insome clinical or subclinical adverse effects in the recipients. Recombinant human erythropoietin (rhEPO) provides a new treatment modality for chemotherapy-induced anemia. Patients and methods: To evaluate the effect of rhEPO onthe need for blood transfusions and on hemoglobin (Hb)concentrations, 227 patients with solid tumors and chemotherapy-induced anemia were enrolled in a randomized, controlled, clinical trial. Of 189 patients evaluable for efficacy, 101 received 5000 IU rhEPO daily s.c, while 88 patients received no treatment during the 12-week controlled phase of the study. Results: The results demonstrate a statistically significant reduction in the need for blood transfusions (28% vs. 42%, P = 0.028) and in the mean volume of packed red blood cells transfused (152 ml vs. 190 ml, p = 0.044) in patients treated with rhEPO compared to untreated controls. This effect was even more pronounced in patients receiving platinum-based chemotherapy (26% vs. 45%, % 0.038). During the controlled treatment phase, the median Hb values increased in the rhEPO patients while remaining unchanged in the control group. The response was seen in all tumor types. Conclusions: RhEPO administration at a dose of 5000 IU daily s.c. increases hemoglobin levels and reduces transfusionrequirements in chemotherapy-induced anemia, especially during platinum-based chemotherap

    Universal and non-universal features of glassy relaxation in propylene carbonate

    Full text link
    It is demonstrated that the susceptibility spectra of supercooled propylene carbonate as measured by depolarized-light-scattering, dielectric-loss, and incoherent quasi-elastic neutron-scattering spectroscopy within the GHz window are simultaneously described by the solutions of a two-component schematic model of the mode-coupling theory (MCT) for the evolution of glassy dynamics. It is shown that the universal beta-relaxation-scaling laws, dealing with the asymptotic behavior of the MCT solutions, describe the qualitative features of the calculated spectra. But the non-universal corrections to the scaling laws render it impossible to achieve a complete quantitative description using only the leading-order-asymptotic results.Comment: 37 pages, 16 figures, to be published in Phys. Rev.
    corecore