10,654 research outputs found
Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof
An unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape
Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells
A unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape
Therapiemöglichkeiten bei Schwangerschaftstübelkeit
Bis zu 85 Prozent der schwangeren Frauen leiden an Übelkeit in der Frühschwangerschaft, und weitere 25 Prozent zusätzlich an Erbrechen. Isabelle Arnet und Kurt Hersberger, beide im Departement für Pharmazeutik der Universität Basel tätig, und Ursula von Mandach, Präsidentin der Schweizerischen Arbeitsgemeinschaft für Perinatale Pharmakologie (SAPP), präsentieren aktuelle medikamentöse Therapieoptionen und die Mittel der ersten Wahl in der Selbstmedikation
A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans
Small molecule metabolites play important roles in Caenorhabditis elegans biology, but effective approaches for identifying their chemical structures are lacking. Recent studies revealed that a family of glycosides, the ascarosides, differentially regulate C. elegans development and behavior. Low concentrations of ascarosides attract males and thus appear to be part of the C. elegans sex pheromone, whereas higher concentrations induce developmental arrest at the dauer stage, an alternative, nonaging larval stage. The ascarosides act synergistically, which presented challenges for their identification via traditional activity-guided fractionation. As a result the chemical characterization of the dauer and male attracting pheromones remained incomplete. Here, we describe the identification of several additional pheromone components by using a recently developed NMR-spectroscopic approach, differential analysis by 2D NMR spectroscopy (DANS), which simplifies linking small molecule metabolites with their biological function. DANS-based comparison of wild-type C. elegans and a signaling-deficient mutant, daf-22, enabled identification of 3 known and 4 previously undescribed ascarosides, including a compound that features a p-aminobenzoic acid subunit. Biological testing of synthetic samples of these compounds revealed additional evidence for synergy and provided insights into structure–activity relationships. Using a combination of the three most active ascarosides allowed full reconstitution of the male-attracting activity of wild-type pheromone extract. Our results highlight the efficacy of DANS as a method for identifying small-molecule metabolites and placing them within a specific genetic context. This study further supports the hypothesis that ascarosides represent a structurally diverse set of nematode signaling molecules regulating major life history traits
A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing
This work introduces an innovative parallel, fully-distributed finite element
framework for growing geometries and its application to metal additive
manufacturing. It is well-known that virtual part design and qualification in
additive manufacturing requires highly-accurate multiscale and multiphysics
analyses. Only high performance computing tools are able to handle such
complexity in time frames compatible with time-to-market. However, efficiency,
without loss of accuracy, has rarely held the centre stage in the numerical
community. Here, in contrast, the framework is designed to adequately exploit
the resources of high-end distributed-memory machines. It is grounded on three
building blocks: (1) Hierarchical adaptive mesh refinement with octree-based
meshes; (2) a parallel strategy to model the growth of the geometry; (3)
state-of-the-art parallel iterative linear solvers. Computational experiments
consider the heat transfer analysis at the part scale of the printing process
by powder-bed technologies. After verification against a 3D benchmark, a
strong-scaling analysis assesses performance and identifies major sources of
parallel overhead. A third numerical example examines the efficiency and
robustness of (2) in a curved 3D shape. Unprecedented parallelism and
scalability were achieved in this work. Hence, this framework contributes to
take on higher complexity and/or accuracy, not only of part-scale simulations
of metal or polymer additive manufacturing, but also in welding, sedimentation,
atherosclerosis, or any other physical problem where the physical domain of
interest grows in time
Some remarks on the visible points of a lattice
We comment on the set of visible points of a lattice and its Fourier
transform, thus continuing and generalizing previous work by Schroeder and
Mosseri. A closed formula in terms of Dirichlet series is obtained for the
Bragg part of the Fourier transform. We compare this calculation with the
outcome of an optical Fourier transform of the visible points of the 2D square
lattice.Comment: 9 pages, 3 eps-figures, 1 jpeg-figure; updated version; another
article (by M. Baake, R. V. Moody and P. A. B. Pleasants) with the complete
solution of the spectral problem will follow soon (see math.MG/9906132
A genome-wide scan of wastewater E. coli for genes under positive selection: focusing on mechanisms of antibiotic resistance
Antibiotic resistance is a global health threat and consequently, there is a need to understand the mechanisms driving its emergence. Here, we hypothesize that genes and mutations under positive selection may contribute to antibiotic resistance. We explored wastewater E. coli, whose genomes are highly diverse. We subjected 92 genomes to a statistical analysis for positively selected genes. We obtained 75 genes under positive selection and explored their potential for antibiotic resistance. We found that eight genes have functions relating to antibiotic resistance, such as biofilm formation, membrane permeability, and bacterial persistence. Finally, we correlated the presence/absence of non-synonymous mutations in positively selected sites of the genes with a function in resistance against 20 most prescribed antibiotics. We identified mutations associated with antibiotic resistance in two genes: the porin ompC and the bacterial persistence gene hipA. These mutations are located at the surface of the proteins and may hence have a direct effect on structure and function. For hipA, we hypothesize that the mutations influence its interaction with hipB and that they enhance the capacity for dormancy as a strategy to evade antibiotics. Overall, genomic data and positive selection analyses uncover novel insights into mechanisms driving antibiotic resistance
Knowing no fear
People with brain injuries involving the amygdala are often poor at recognizing facial expressions of fear, but the extent to which this impairment compromises other signals of the emotion of fear has not been clearly established. We investigated N.M., a person with bilateral amygdala damage and a left thalamic lesion, who was impaired at recognizing fear from facial expressions. N.M. showed an equivalent deficit affecting fear recognition from body postures and emotional sounds. His deficit of fear recognition was not linked to evidence of any problem in recognizing anger (a common feature in other reports), but for his everyday experience of emotion N.M. reported reduced anger and fear compared with neurologically normal controls. These findings show a specific deficit compromising the recognition of the emotion of fear from a wide range of social signals, and suggest a possible relationship of this type of impairment with alterations of emotional experience
Screening enhancement factors for laboratory CNO and rp astrophysical reactions
Cross sections of laboratory CNO and rp astrophysical reactions are enhanced
due to the presence of the multi-electron cloud that surrounds the target
nuclei. As a result the relevant astrophysical factors are overestimated unless
corrected appropriately. This study gives both an estimate of the error
committed if screening effects are not taken into account and a rough profile
of the laboratory energy thresholds at which the screening effect appears. The
results indicate that, for most practical purposes, screening corrections to
past relevant experiments can be disregarded. Regarding future experiments,
however, screening corrections to the CNO reactions will certainly be of
importance as they are closely related to the solar neutrino fluxes and the rp
process. Moreover, according to the present results, screening effects will
have to be taken into account particularly by the current and future LUNA
experiments, where screened astrophysical factors will be enhanced to a
significant degree.Comment: 6 RevTex pages + 2 ps figures. (Revised version). Accepted for
publication in Journal of Physics
- …