3,463 research outputs found

    Plant Disease Resistance Inducing Activity of 7-Oxo- and 7-Hydroxysterols

    Get PDF
    The 7-oxosterols 1–2 and the 7-hydroxysterols 3–6 induce resistance toward the fungal pathogens Puccinia striiformis West, and Puccinia hordei Otth in barley and wheat. Primary leaves of the plants were sprayed with solutions of the compounds (10-4 mol/l in 1% aqu. ethanol) followed, 2 days later, by challenge inoculation with the fungal pathogens. The results indicate that 7a- and 7β-hydroxylated epimers of β-sitosterol and cholesterol show the highest value of induced resistance (39-49% reduction of infection sites). No enhanced resistance toward the fungi Erysiphe graminis DC f. sp. tritici and hordei and Cochliobolus sativus Ito & Kuribayashi was observed. © 1995 Verlag der Zeitschrift für Naturforschung. All rights reserved

    Hyperfine interaction and magnetoresistance in organic semiconductors

    Full text link
    We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. Our study employs both experiment and theoretical modelling. An excitonic pair mechanism model based on hyperfine interaction, previously suggested by others to explain magnetic field effects in organics, is examined. Whereas this model can explain a few key aspects of the experimental data, we, however, uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.Comment: 10 pages, 7 figures, 1 tabl

    Nonequilibrium electron spin polarization in a double quantum dot. Lande mechanism

    Full text link
    In moderately strong magnetic fields, the difference in Lande g-factors in each of the dots of a coupled double quantum dot device may induce oscillations between singlet and triplet states of the entangled electron pair and lead to a nonequilibrium electron spin polarization. We will show that this polarization may partially survive the rapid inhomogeneous decoherence due to random nuclear magnetic fields.Comment: New version contains figures. New title better reflects the content of the pape

    Successive phase transitions to antiferromagnetic and weak-ferromagnetic long-range orders in quasi-one-dimensional antiferromagnet Cu3_3Mo2_2O9_9

    Full text link
    Investigation of the magnetism of Cu3_3Mo2_2O9_9 single crystal, which has antiferromagnetic (AF) linear chains interacting with AF dimers, reveals an AF second-order phase transition at TN=7.9T_{\rm N} = 7.9 K. Although weak ferromagnetic-like behavior appears at lower temperatures in low magnetic fields, complete remanent magnetization cannot be detected down to 0.5 K. However, a jump is observed in the magnetization below weak ferromagnetic (WF) phase transition at Tc≃2.5T_{\rm c} \simeq 2.5 K when a tiny magnetic field along the a axis is reversed, suggesting that the coercive force is very weak. A component of magnetic moment parallel to the chain forms AF long-range order (LRO) below TNT_{\rm N}, while a perpendicular component is disordered above TcT_{\rm c} at zero magnetic field and forms WF-LRO below TcT_{\rm c}. Moreover, the WF-LRO is also realized with applying magnetic fields even between TcT_{\rm c} and TNT_{\rm N}. These results are explainable by both magnetic frustration among symmetric exchange interactions and competition between symmetric and asymmetric Dzyaloshinskii-Moriya exchange interactions.Comment: 7 pages, 7 figure

    Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05%

    Get PDF
    Data consistency is an important prerequisite to build radio occultation (RO) climatologies based on a combined record of data from different satellites. The presence of multiple RO receiving satellites in orbit over the same time period allows for testing this consistency. We used RO data from CHAMP (CHAllenging Minisatellite Payload for geoscientific research), six FORMOSAT-3/COSMIC satellites (Formosa Satellite Mission 3/Constellation Observing System for Meteorology, Ionosphere and Climate, F3C), and GRACE-A (Gravity Recovery and Climate Experiment). We show latitude-altitude-resolved results for an example month (October 2007) and the temporal evolution of differences in a climate record of global and monthly means from January 2007 to December 2009. Latitude- and altitude-resolved refractivity and dry temperature climatologies clearly show the influence of different sampling characteristics; monthly mean deviations from the multi-satellite mean over the altitude domain 10 km to 30 km typically reach 0.1% and 0.2 K, respectively. Nevertheless, the 3-yr average deviations (shorter for CHAMP) are less than 0.03% and 0.05 K, respectively. We find no indications for instrument degradation, temporal inhomogeneities in the RO records, or temporal trends in sampling patterns. Based on analysis fields from ECMWF (European Centre for Medium-Range Weather Forecasts), we can estimate – and subtract – the sampling error from each monthly climatology. After such subtraction, refractivity deviations are found reduced to <0.05% in almost any month and dry temperature deviations to <0.05 K (<0.02% relative) for almost every satellite and month. 3-yr average deviations are even reduced to <0.01% and <0.01 K (CHAMP: −0.05 K), respectively, establishing an amazing consistency of RO climatologies from different satellites. If applying the same processing scheme for all data, refractivity and dry temperature records from individual satellites with similar bending angle noise can be safely combined up to 30 km altitude (refractivity also up to 35 km) to a consistent single climate record of substantial value for climate monitoring in the upper troposphere and lower stratosphere

    Compact Frontend-Electronics and Bidirectional 3.3 Gbps Optical Datalink for Fast Proportional Chamber Readout

    Get PDF
    The 9600 channels of the multi-wire proportional chamber of the H1 experiment at HERA have to be read out within 96 ns and made available to the trigger system. The tight spatial conditions at the rear end flange require a compact bidirectional readout electronics with minimal power consumption and dead material. A solution using 40 identical optical link modules, each transferring the trigger information with a physical rate of 4 x 832 Mbps via optical fibers, has been developed and commisioned. The analog pulses from the chamber can be monitored and the synchronization to the global HERA clock signal is ensured.Comment: 13 pages, 10 figure

    Efficiency of self-cleaning properties in wheat (Triticum aestivum L.)

    Get PDF
    An experimental study was carried out to assess the efficiency of self-cleaning properties of three wheat cultivars and their potential in the protection against Blumeria graminis f. sp. tritici, a fungus that causes powdery mildew. Leaf samples with intact epicuticular structure were compared to such with wiped wax crystals. Contact angles were determined and the surfaces were subjected to a standardized contamination test with hydrophobic fluorescence powder. Another set of samples was inoculated with conidia of B. graminis and, after various time intervals, exposed to artificial fog or rain. For the intact surfaces of all cultivars contact angles of about 165° were measured. It is therefore suggested that wheat should be termed superhydrophobic. The wiping of the wax crystals led to a significant decrease of contact angles. This fact underlines the importance of surface roughness for achieving extreme water-repellency. In the standardized contamination test significantly more particles remained on the wiped surfaces than on those who had been left intact. This result was ascribed to increased adhesion on the smoothed samples.The inoculation with subsequent precipitation revealed a significantly better removal effect of conidia from intact than from wiped surfaces. This was irrespective of the wheat cultivar. In general, conidia were more effectively removed by rain than by fog. This was probably due to the higher kinetic energy and the greater amount of water when using rain. If fog application was delayed by 3 hours a higher percentage of conidia remained on the surface. As possible causes are discussed increased adhesion by conidia secretions or the development of primary germ tubes.Despite its highly efficient self-cleaning properties proved here, wheat is frequently infected by Blumeria graminis. We conclude that the high water content of the mildew conidia, the ability of Blumeria graminis to germinate at very low humidities and its rapid irreversible adhesion are effective adaptations in order to overcome the barrier of a superhydrophobic self-cleaning surface

    Acute life-threatening extrinsic allergic alveolitis in a paint controller

    Get PDF
    Background Occupational diisocyanate-induced extrinsic allergic alveolitis (EAA) is a rare and probably underestimated diagnosis. Two acute occupational EAA cases have been described in this context, but neither of them concerned hexamethylene diisocyanate (HDI) exposure. Aims To investigate the cause of a life-threatening EAA arising at work in a healthy 30-year-old female paint quality controller. Methods Occupational medical assessment, workplace evaluation, airborne and biological monitoring and immunodermatological tests. Results Diagnosis of EAA relied on congruent clinical and radiological information, confirmed occupational HDI exposure and positive IgG antibodies and patch tests. The patient worked in a small laboratory for 7 years, only occasionally using HDI-containing hardeners. While working with HDI for 6 h, she developed breathlessness, rapidly progressing to severe respiratory failure. Workplace HDI airborne exposure values ranged from undetectable levels to 4.25 p.p.b. Biological monitoring of urinary hexamethylene diamine in co-workers ranged from <1.0 to 15.4 μg/g creatinine. Patch tests 8 months later showed delayed skin reaction to HDI at 48 h. Subsequent skin biopsy showed spongiotic dermatitis with infiltration of CD4+ and CD8+ T cells. Conclusions We believe this is the first reported case of acute life-threatening EAA following exposure to HDI. Low concentrations of airborne HDI and relatively high urinary hexamethylene diamine suggest significant skin absorption of HDI could have significantly contributed to the development of this acute occupational EA

    The Optical System for the Large Size Telescope of the Cherenkov Telescope Array

    Full text link
    The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m2^2. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of ∼\sim94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical axis reference laser on the target of the telescope camera. The two actuators and the universal joint of each mirror facet are respectively fixed to three neighboring joints of the dish space frame, via specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589
    • …
    corecore