17 research outputs found
Marine climate and fisheries scenario of Tamil Nadu Climcard-1
Marine climate and fisheries scenario of Tamil Nadu Climcard-
Advances in the treatment of prolactinomas
Prolactinomas account for approximately 40% of all pituitary adenomas and are an important cause of hypogonadism and infertility. The ultimate goal of therapy for prolactinomas is restoration or achievement of eugonadism through the normalization of hyperprolactinemia and control of tumor mass. Medical therapy with dopamine agonists is highly effective in the majority of cases and represents the mainstay of therapy. Recent data indicating successful withdrawal of these agents in a subset of patients challenge the previously held concept that medical therapy is a lifelong requirement. Complicated situations, such as those encountered in resistance to dopamine agonists, pregnancy, and giant or malignant prolactinomas, may require multimodal therapy involving surgery, radiotherapy, or both. Progress in elucidating the mechanisms underlying the pathogenesis of prolactinomas may enable future development of novel molecular therapies for treatment-resistant cases. This review provides a critical analysis of the efficacy and safety of the various modes of therapy available for the treatment of patients with prolactinomas with an emphasis on challenging situations, a discussion of the data regarding withdrawal of medical therapy, and a foreshadowing of novel approaches to therapy that may become available in the future
Thiazolopyridine ureas as novel antitubercular agents acting through inhibition of DNA gyrase B
A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC <sub>50</sub> < 1 nM and Mtb MIC < 0.1 muM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis. 2013 American Chemical Societ
Parkinson’s families project: a UK-wide study of early onset and familial Parkinson’s disease
The Parkinson’s Families Project is a UK-wide study aimed at identifying genetic variation associated with familial and early-onset Parkinson’s disease (PD). We recruited individuals with a clinical diagnosis of PD and age at motor symptom onset ≤45 years and/or a family history of PD in up to third-degree relatives. Where possible, we also recruited affected and unaffected relatives. We analysed DNA samples with a combination of single nucleotide polymorphism (SNP) array genotyping, multiplex ligation-dependent probe amplification (MLPA), and whole-genome sequencing (WGS). We investigated the association between identified pathogenic mutations and demographic and clinical factors such as age at motor symptom onset, family history, motor symptoms (MDS-UPDRS) and cognitive performance (MoCA). We performed baseline genetic analysis in 718 families, of which 205 had sporadic early-onset PD (sEOPD), 113 had familial early-onset PD (fEOPD), and 400 had late-onset familial PD (fLOPD). 69 (9.6%) of these families carried pathogenic variants in known monogenic PD-related genes. The rate of a molecular diagnosis increased to 28.1% in PD with motor onset ≤35 years. We identified pathogenic variants in LRRK2 in 4.2% of families, and biallelic pathogenic variants in PRKN in 3.6% of families. We also identified two families with SNCA duplications and three families with a pathogenic repeat expansion in ATXN2, as well as single families with pathogenic variants in VCP, PINK1, PNPLA6, PLA2G6, SPG7, GCH1, and RAB32. An additional 73 (10.2%) families were carriers of at least one pathogenic or risk GBA1 variant. Most early-onset and familial PD cases do not have a known genetic cause, indicating that there are likely to be further monogenic causes for PD