33 research outputs found

    Hepatitis C Virus Controls Interferon Production through PKR Activation

    Get PDF
    Hepatitis C virus is a poor inducer of interferon (IFN), although its structured viral RNA can bind the RNA helicase RIG-I, and activate the IFN-induction pathway. Low IFN induction has been attributed to HCV NS3/4A protease-mediated cleavage of the mitochondria-adapter MAVS. Here, we have investigated the early events of IFN induction upon HCV infection, using the cell-cultured HCV JFH1 strain and the new HCV-permissive hepatoma-derived Huh7.25.CD81 cell subclone. These cells depend on ectopic expression of the RIG-I ubiquitinating enzyme TRIM25 to induce IFN through the RIG-I/MAVS pathway. We observed induction of IFN during the first 12 hrs of HCV infection, after which a decline occurred which was more abrupt at the protein than at the RNA level, revealing a novel HCV-mediated control of IFN induction at the level of translation. The cellular protein kinase PKR is an important regulator of translation, through the phosphorylation of its substrate the eIF2α initiation factor. A comparison of the expression of luciferase placed under the control of an eIF2α-dependent (IRESEMCV) or independent (IRESHCV) RNA showed a specific HCV-mediated inhibition of eIF2α-dependent translation. We demonstrated that HCV infection triggers the phosphorylation of both PKR and eIF2α at 12 and 15 hrs post-infection. PKR silencing, as well as treatment with PKR pharmacological inhibitors, restored IFN induction in JFH1-infected cells, at least until 18 hrs post-infection, at which time a decrease in IFN expression could be attributed to NS3/4A-mediated MAVS cleavage. Importantly, both PKR silencing and PKR inhibitors led to inhibition of HCV yields in cells that express functional RIG-I/MAVS. In conclusion, here we provide the first evidence that HCV uses PKR to restrain its ability to induce IFN through the RIG-I/MAVS pathway. This opens up new possibilities to assay PKR chemical inhibitors for their potential to boost innate immunity in HCV infection

    Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

    Get PDF
    Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response

    Multifunctional Adaptive NS1 Mutations Are Selected upon Human Influenza Virus Evolution in the Mouse

    Get PDF
    The role of the NS1 protein in modulating influenza A virulence and host range was assessed by adapting A/Hong Kong/1/1968 (H3N2) (HK-wt) to increased virulence in the mouse. Sequencing the NS genome segment of mouse-adapted variants revealed 11 mutations in the NS1 gene and 4 in the overlapping NEP gene. Using the HK-wt virus and reverse genetics to incorporate mutant NS gene segments, we demonstrated that all NS1 mutations were adaptive and enhanced virus replication (up to 100 fold) in mouse cells and/or lungs. All but one NS1 mutant was associated with increased virulence measured by survival and weight loss in the mouse. Ten of twelve NS1 mutants significantly enhanced IFN-β antagonism to reduce the level of IFN β production relative to HK-wt in infected mouse lungs at 1 day post infection, where 9 mutants induced viral yields in the lung that were equivalent to or significantly greater than HK-wt (up to 16 fold increase). Eight of 12 NS1 mutants had reduced or lost the ability to bind the 30 kDa cleavage and polyadenylation specificity factor (CPSF30) thus demonstrating a lack of correlation with reduced IFN β production. Mutant NS1 genes resulted in increased viral mRNA transcription (10 of 12 mutants), and protein production (6 of 12 mutants) in mouse cells. Increased transcription activity was demonstrated in the influenza mini-genome assay for 7 of 11 NS1 mutants. Although we have shown gain-of-function properties for all mutant NS genes, the contribution of the NEP mutations to phenotypic changes remains to be assessed. This study demonstrates that NS1 is a multifunctional virulence factor subject to adaptive evolution

    Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress

    No full text
    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress

    Plasmacytoid dendritic cells sense hepatitis C virus–infected cells, produce interferon, and inhibit infection

    No full text
    Hepatitis C virus (HCV), a member of the Flaviviridae family, is a single-stranded positive-sense RNA virus that infects >170 million people worldwide and causes acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Despite its ability to block the innate host response in infected hepatocyte cell lines in vitro, HCV induces a strong type 1 interferon (IFN) response in the infected liver. The source of IFN in vivo and how it is induced are currently undefined. Here we report that HCV-infected cells trigger a robust IFN response in plasmacytoid dendritic cells (pDCs) by a mechanism that requires active viral replication, direct cell-cell contact, and Toll-like receptor 7 signaling, and we show that the activated pDC supernatant inhibits HCV infection in an IFN receptor-dependent manner. Importantly, the same events are triggered by HCV subgenomic replicon cells but not by free virus particles, suggesting the existence of a novel cell-cell RNA transfer process whereby HCV-infected cells can activate pDCs to produce IFN without infecting them. These results may explain how HCV induces IFN production in the liver, and they reveal a heretofore unsuspected aspect of the innate host response to viruses that can subvert the classical sensing machinery in the cells they infect, and do not infect or directly activate pDCs
    corecore