131 research outputs found
Affinity Constants of Naturally Acquired and Vaccine-Induced Anti-Pseudomonas aeruginosa Antibodies in Healthy Adults and Cystic Fibrosis Patients
Naturally acquired anti-Pseudomonas aeruginosa antibody fails to afford protection against repeated P. aeruginosa bronchopulmonary exacerbations in cystic fibrosis (CF) patients. In an effort to explain this phenomenon, the titer and affinity constants of serum anti-lipopolysaccharide (LPS) IgG were determined in five study groups: healthy adults before and after immunization with a polyvalent LPS-based vaccine, healthy noncolonized CF patients before and after immunization, nonimmunized CF patients with significantly elevated anti-LPS antibody titers without documented colonization, recently colonized CF patients before and after immunization, and nonimmunized CF patients chronically colonized with P. aeruginosa. Immunization elicited a significant rise in total anti-LPS immunoglobulin levels and affinity constants in both healthy adults and CF patients. Although chronically colonized patients had elevated levels of total anti-LPS antibody, these antibodies possessed affinities at least tOO-fold less than those of vaccine-induced antibodie
The abundance of C18O and HDO in the envelope and hot core of the intermediate mass protostar NGC 7129 FIRS 2
NGC 7129 FIRS 2 is a young intermediate-mass (IM) protostar, which is
associated with two energetic bipolar outflows and displays clear signs of the
presence of a hot core. It has been extensively observed with ground based
telescopes and within the WISH Guaranteed Time Herschel Key Program. We present
new observations of the C18O 3-2 and the HDO 3_{12}-2_{21} lines towards NGC
7129 FIRS 2. Combining these observations with Herschel data and modeling their
emissions, we constrain the C18O and HDO abundance profiles across the
protostellar envelope. In particular, we derive the abundance of C18O and HDO
in the hot core. The intensities of the C18O lines are well reproduced assuming
that the C18O abundance decreases through the protostellar envelope from the
outer edge towards the centre until the point where the gas and dust reach the
CO evaporation temperature (~20-25 K) where the C18O is released back to the
gas phase. Once the C18O is released to the gas phase, the modelled C18O
abundance is found to be ~1.6x10^{-8}, which is a factor of 10 lower than the
reference abundance. This result is supported by the non-detection of C18O 9-8,
which proves that even in the hot core (T_k>100 K) the CO abundance must be 10
times lower than the reference value. Several scenarios are discussed to
explain this C18O deficiency. One possible explanation is that during the
pre-stellar and protostellar phase, the CO is removed from the grain mantles by
reactions to form more complex molecules. Our HDO modeling shows that the
emission of HDO 3_{12}-2_{21} line is maser and comes from the hot core
(T_k>100 K). Assuming the physical structure derived by Crimier et al. (2010),
we determine a HDO abundance of ~0.4 - 1x10^{-7} in the hot core of this IM
protostar, similar to that found in the hot corinos NGC 1333 IRAS 2A and IRAS
16293-2422.Comment: 10 pages, 7 figure
Herschel-HIFI detections of hydrides towards AFGL 2591 (Envelope emission versus tenuous cloud absorption)
The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel
Space Observatory allows the first observations of light diatomic molecules at
high spectral resolution and in multiple transitions. Here, we report deep
integrations using HIFI in different lines of hydrides towards the high-mass
star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+
and SH+ have not been detected. All molecules except for CH and CH+ are seen in
absorption with low excitation temperatures and at velocities different from
the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P =
3/2_2,- - 1/2_1,+) and CH+(J = 1 - 0, J = 2 - 1) lines are detected in emission
at the systemic velocity. We can assign the absorption features to a foreground
cloud and an outflow lobe, while the CH and CH+ emission stems from the
envelope. The observed abundance and excitation of CH and CH+ can be explained
in the scenario of FUV irradiated outflow walls, where a cavity etched out by
the outflow allows protostellar FUV photons to irradiate and heat the envelope
at larger distances driving the chemical reactions that produce these
molecules.Comment: Accepted for publication in Astronomy and Astrophysics (HIFI first
results issue
Broad‐scale patterns of the Afro‐Palaearctic landbird migration
Aim: Knowledge of broad-scale biogeographical patterns of animal migration is important for understanding ecological drivers of migratory behaviours. Here, we present a flyway-scale assessment of the spatial structure and seasonal dynamics of the Afro-Palaearctic bird migration system and explore how phenology of the environment guides long-distance migration. Location: Europe and Africa. Time period: 2009–2017. Major taxa studied: Birds. Methods: We compiled an individual-based dataset comprising 23 passerine and near-passerine species of 55 European breeding populations, in which a total of 564 individuals were tracked during migration between Europe and sub-Saharan Africa. In addition, we used remotely sensed primary productivity data (the normalized difference vegetation index) to estimate the timing of vegetation green-up in spring and senescence in autumn across Europe. First, we described how individual breeding and non-breeding sites and the migratory flyways link geographically. Second, we examined how the timing of migration along the two major Afro-Palaearctic flyways is tuned with vegetation phenology at the breeding sites. Results: We found the longitudes of individual breeding and non-breeding sites to be related in a strongly positive manner, whereas the latitudes of breeding and non-breeding sites were related negatively. In autumn, migration commenced ahead of vegetation senescence, and the timing of migration was 5–7 days earlier along the Western flyway compared with the Eastern flyway. In spring, the time of arrival at breeding sites was c. 1.5 days later for each degree northwards and 6–7 days later along the Eastern compared with the Western flyway, reflecting the later spring green-up at higher latitudes and more eastern longitudes. Main conclusions: Migration of the Afro-Palaearctic landbirds follows a longitudinally parallel leapfrog migration pattern, whereby migrants track vegetation green-up in spring but depart before vegetation senescence in autumn. The degree of continentality along migration routes and at the breeding sites of the birds influences the timing of migration on a broad scale
Environmental effects on flying migrants revealed by radar
Migratory animals are affected by various factors during their journeys, and the study of animal movement by radars has been instrumental in revealing key influences of the environment on flying migrants. Radars enable the simultaneous tracking of many individuals of almost all sizes within the radar range during day and night, and under low visibility conditions. We review how atmospheric conditions, geographic features and human development affect the behavior of migrating insects and birds as recorded by radars. We focus on flight initiation and termination, as well as in-flight behaviour that includes changes in animal flight direction, speed and altitude. We have identified several similarities and differences in the behavioral responses of aerial migrants including an overlooked similarity in the use of thermal updrafts by very small (e.g. aphids) and very large (e.g. vultures) migrants. We propose that many aerial migrants modulate their migratory flights in relation to the interaction between atmospheric conditions and geographic features. For example, aerial migrants that encounter crosswind may terminate their flight or continue their migration and may also drift or compensate for lateral displacement depending on their position (over land, near the coast or over sea). We propose several promising directions for future research, including the development and application of algorithms for tracking insects, bats and large aggregations of animals using weather radars. Additionally, an important contribution will be the spatial expansion of aeroecological radar studies to Africa, most of Asia and South America where no such studies have been undertaken. Quantifying the role of migrants in ecosystems and specifically estimating the number of departing birds from stopover sites using low-elevation radar scans is important for quantifying migrant– habitat relationships. This information, together with estimates of population demographics and migrant abundance, can help resolve the long-term dynamics of migrant populations facing large-scale environmental changes
Sensitive limits on the abundance of cold water vapor in the DM Tau protoplanetary disk
We performed a sensitive search for the ground-state emission lines of ortho-
and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI
instrument. No strong lines are detected down to 3sigma levels in 0.5 km/s
channels of 4.2 mK for the 1_{10}--1_{01} line and 12.6 mK for the
1_{11}--0_{00} line. We report a very tentative detection, however, of the
1_{10}--1_{01} line in the Wide Band Spectrometer, with a strength of
T_{mb}=2.7 mK, a width of 5.6 km/s and an integrated intensity of 16.0 mK km/s.
The latter constitutes a 6sigma detection. Regardless of the reality of this
tentative detection, model calculations indicate that our sensitive limits on
the line strengths preclude efficient desorption of water in the UV illuminated
regions of the disk. We hypothesize that more than 95-99% of the water ice is
locked up in coagulated grains that have settled to the midplane.Comment: 5 pages, 3 figures. Accepted for publication in the Herschel HIFI
special issue of A&
Hydrides in Young Stellar Objects: Radiation tracers in a protostar-disk-outflow system
Context: Hydrides of the most abundant heavier elements are fundamental
molecules in cosmic chemistry. Some of them trace gas irradiated by UV or
X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a
prototypical region of high-mass star formation. Methods: W3 IRS5 was observed
by HIFI on the Herschel Space Observatory with deep integration (about 2500 s)
in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and
the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J=1-0 lines
are found mostly in absorption, but also appear to exhibit weak emission
(P-Cyg-like). Emission requires high density, thus originates most likely near
the protostar. This is corroborated by the absence of line shifts relative to
the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong
absorption components at a velocity shifted relative to W3 IRS5, which are
attributed to foreground clouds. Conclusions: The molecular column densities
derived from observations correlate well with the predictions of a model that
assumes the main emission region is in outflow walls, heated and irradiated by
protostellar UV radiation.Comment: Astronomy and Astrophysics Letters, in pres
Water in massive star-forming regions: HIFI observations of W3 IRS5
We present Herschel observations of the water molecule in the massive
star-forming region W3 IRS5. The o-H17O 110-101, p-H18O 111-000, p-H2O 22
202-111, p-H2O 111-000, o-H2O 221-212, and o-H2O 212-101 lines, covering a
frequency range from 552 up to 1669 GHz, have been detected at high spectral
resolution with HIFI. The water lines in W3 IRS5 show well-defined
high-velocity wings that indicate a clear contribution by outflows. Moreover,
the systematically blue-shifted absorption in the H2O lines suggests expansion,
presumably driven by the outflow. No infall signatures are detected. The p-H2O
111-000 and o-H2O 212-101 lines show absorption from the cold material (T ~ 10
K) in which the high-mass protostellar envelope is embedded. One-dimensional
radiative transfer models are used to estimate water abundances and to further
study the kinematics of the region. We show that the emission in the rare
isotopologues comes directly from the inner parts of the envelope (T > 100 K)
where water ices in the dust mantles evaporate and the gas-phase abundance
increases. The resulting jump in the water abundance (with a constant inner
abundance of 10^{-4}) is needed to reproduce the o-H17O 110-101 and p-H18O
111-000 spectra in our models. We estimate water abundances of 10^{-8} to
10^{-9} in the outer parts of the envelope (T < 100 K). The possibility of two
protostellar objects contributing to the emission is discussed.Comment: Accepted for publication in the A&A HIFI special issu
Water in Star-Forming Regions with the Herschel Space Observatory (WISH): Overview of key program and first results
`Water In Star-forming regions with Herschel' (WISH) is a key program on the
Herschel Space Observatory designed to probe the physical and chemical
structure of young stellar objects using water and related molecules and to
follow the water abundance from collapsing clouds to planet-forming disks.
About 80 sources are targeted covering a wide range of luminosities and
evolutionary stages, from cold pre-stellar cores to warm protostellar envelopes
and outflows to disks around young stars. Both the HIFI and PACS instruments
are used to observe a variety of lines of H2O, H218O and chemically related
species. An overview of the scientific motivation and observational strategy of
the program is given together with the modeling approach and analysis tools
that have been developed. Initial science results are presented. These include
a lack of water in cold gas at abundances that are lower than most predictions,
strong water emission from shocks in protostellar environments, the importance
of UV radiation in heating the gas along outflow walls across the full range of
luminosities, and surprisingly widespread detection of the chemically related
hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of
the energy budget indicate that H2O is generally not the dominant coolant in
the warm dense gas associated with protostars. Very deep limits on the cold
gaseous water reservoir in the outer regions of protoplanetary disks are
obtained which have profound implications for our understanding of grain growth
and mixing in disks.Comment: 71 pages, 10 figures, PASP, in pres
- …