7 research outputs found

    Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids

    Get PDF
    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions

    Purification and Characterization of Nucleolin and Its Identification as a Transcription Repressor

    No full text
      Expression of the acute-phase response genes, such as that for alpha-1 acid glycoprotein (AGP), involves both positive and negative transcription factors. A positive transcription factor, AGP/EBP, and a negative transcription factor, factor B have been identified as the two most important factors responsible for the induction of the AGP gene. In this paper we report the purification, characterization, and identification of a B-motif-binding factor from the mouse hepatoma cell line 129p. The purified factor has been identified as nucleolin by amino acid sequence analysis. Biochemical and functional studies further established that nucleolin is a transcription repressor for regulation of AGP and possibly other acute- phase response genes. Thus, in addition to the many known functions of nucleolin, such as rRNA transcription, processing, ribosome biogenesis, and the shutting of proteins between the cytoplasmic and nuclear compartments, it may also function as a transcriptional repressor.#134

    Preparation and characterization of antibody-drug conjugates acting on HER2-positive cancer cells.

    No full text
    Two systems of antibody-drug conjugates (ADCs), noncleavable H32-DM1 and cleavable H32-VCMMAE, were developed by using different linkers and drugs attached to the anti-HER2 antibody H32, which is capable of cell internalization. Activated functional groups, including an N-hydroxysuccinimidyl (NHS) ester and a maleimide, were utilized to make the ADCs. Mass spectrometry, hydrophobic interaction chromatography, polyacrylamide gel electrophoresis, and in vitro cell assays were performed to analyze and optimize the ADCs. Several H32-VCMMAE ADCs were established with higher DARs and greater synthetic yields without compromising potency. The anticancer efficacy of H32-DM1 was 2- to 8-fold greater than that of Kadcyla®. The efficacy of H32-VCMMAE was in turn better than that of H32-DM1. The anticancer efficacy of these ADCs against N87, SK-BR-3 and BT474 cells was in the following order: H32-VCMMAE series > H32-DM1 series > Kadcyla®. The optimal DAR for H32-VCMMAE was found to be 6.6, with desirable attributes including good cell penetration, a releasable payload in cancer cells, and high potency. Our results demonstrated the potential of H32-VCMMAE as a good ADC candidate
    corecore