81 research outputs found

    Dissolved organic matter cycling in eastern Mediterranean rivers experiencing multiple pressures. The case of the trans-boundary Evros River

    Get PDF
    The objective of our study was to provide a comprehensive evaluation on C, N, P cycling in medium sized Mediterranean rivers, such as the Evros, experiencing multiple pressures (intensive agriculture, industrial activities, population density). Our work aims also to contribute to the development of integrated management policies. Dissolved organic matter (DOM) cycling were investigated, during a one-year study. It was shown that the organic component of N and P was comparable to those of large Mediterranean rivers (Rhone, Po). In the lower parts of the river where all point and non-point inputs converge, the high inorganic N input favour elevated assimilation rates by phytoplankton and result in increased chl-a concentrations and autochthonous dissolved organic matter (DOM) production during the dry season with limited water flow. Moreover, carbohydrate distribution revealed that there is a constant background of soil derived mono-saccharides on top of which are superimposed impulses of poly-saccharides during blooms. During the dry season, inorganic nutrients and DOM are trapped in the lower parts of the river, whereas during high flow conditions DOM is flushed towards the sea and organic nitrogen forms can become an important TDN constituent (at least 40%) transported to shelf waters. The co-existence of terrigenous material with autochthonous and some anthropogenic is supported by the relatively low DOC:DON and DOC:DOP ratios, the positive correlation of DOC vs chl-a and the decoupling between DOC and DON. Overall, this study showed that in medium size Mediterranean rivers, such as the Evros, intensive agriculture and pollution sources in combination with water management practices and climatic variability are important factors determining C, N, P dynamics and export to coastal seas. Also, it highlights the importance of the organic fraction of N and P when considering management practices

    Evaluating case studies of community-oriented integrated care.

    Get PDF
    This paper summarises a ten-year conversation within London Journal of Primary Care about the nature of community-oriented integrated care (COIC) and how to develop and evaluate it. COIC means integration of efforts for combined disease-treatment and health-enhancement at local, community level. COIC is similar to the World Health Organisation concept of a Community-Based Coordinating Hub - both require a local geographic area where different organisations align their activities for whole system integration and develop local communities for health. COIC is a necessary part of an integrated system for health and care because it enables multiple insights into 'wicked problems', and multiple services to integrate their activities for people with complex conditions, at the same time helping everyone to collaborate for the health of the local population. The conversation concludes seven aspects of COIC that warrant further attention

    Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011

    Get PDF
    An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of Deriving Information on Surface COnditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NOx Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction \u3e0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (\u3e0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures

    Bay Breeze Influence on Surface Ozone at Edgewood, MD During July 2011

    Get PDF
    Surface ozone (O3) was analyzed to investigate the role of the bay breeze on air quality at two locations in Edgewood, Maryland (lat: 39.4deg, lon: 76.3deg) for the month of July 2011. Measurements were taken as part of the first year of NASA's "Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) Earth Venture campaign and as part of NASA's Geostationary for Coastal and Air Pollution Events Chesapeake Bay Oceanographic campaign with DISCOVER-AQ (Geo-CAPE CBODAQ). Geo-CAPE CBODAQ complements DISCOVER-AQ by providing ship-based observations over the Chesapeake Bay. A major goal of DISCOVER-AQ is determining the relative roles of sources, photochemistry and local meteorology during air quality events in the Mid-Atlantic region of the U.S. Surface characteristics, transport and vertical structures of O3 during bay breezes were identified using in-situ surface, balloon and aircraft data, along with remote sensing equipment. Localized late day peaks in O3 were observed during bay breeze days, maximizing an average of 3 h later compared to days without bay breezes. Of the 10 days of July 2011 that violated the U.S. Environmental Protection Agency (EPA) 8 h O3 standard of 75 parts per billion by volume (ppbv) at Edgewood, eight exhibited evidence of a bay breeze circulation. The results indicate that while bay breezes and the processes associated with them are not necessary to cause exceedances in this area, bay breezes exacerbate poor air quality that sustains into the late evening hours at Edgewood. The vertical and horizontal distributions of O3 from the coastal Edgewood area to the bay also show large gradients that are often determined by boundary layer stability. Thus, developing air quality models that can sufficiently resolve these dynamics and associated chemistry, along with more consistent monitoring of O3 and meteorology on and along the complex coastline of Chesapeake Bay must be a high priority

    Thrombocytopenic, thromboembolic and haemorrhagic events following second dose with BNT162b2 and ChAdOx1: self-controlled case series analysis of the English national sentinel cohort

    Get PDF
    Thrombosis associated with thrombocytopenia was a matter of concern post first and second doses of BNT162b2 and ChAdOx1 COVID-19 vaccines. Therefore, it is important to investigate the risk of thrombocytopenic, thromboembolic and haemorrhagic events following a second dose of BNT162b2 and ChAdOx1 COVID-19 vaccines. We conducted a large-scale self-controlled case series analysis, using routine primary care data linked to hospital data, among 12.3 million individuals (16 years old and above) in England. We used the nationally representative Oxford-Royal College of General Practitioners (RCGP) sentinel network database with baseline and risk periods between 8th December 2020 and 11th June 2022. We included individuals who received two vaccine (primary) doses of the BNT162b2 mRNA (Pfizer-BioNTech) and two vaccine doses of ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccines in our analyses. We carried out a self-controlled case series (SCCS) analysis for each outcome using a conditional Poisson regression model with an offset for the length of risk period. We reported the incidence rate ratios (IRRs) and 95% confidence intervals (CI) of thrombocytopenic, thromboembolic (including arterial and venous events) and haemorrhagic events, in the period of 0-27 days after receiving a second dose of BNT162b2 or ChAdOx1 vaccines compared to the baseline period (14 or more days prior to first dose, 28 or more days after the second dose and the time between 28 or more days after the first and 14 or more days prior to the second dose). We adjusted for a range of potential confounders, including age, sex, comorbidities and deprivation. Between December 8, 2020 and February 11, 2022, 6,306,306 individuals were vaccinated with two doses of BNT162b2 and 6,046,785 individuals were vaccinated with two doses of ChAdOx1. Compared to the baseline, our analysis show no increased risk of venous thromboembolic events (VTE) for both BNT162b2 (IRR 0.71, 95% CI: 0.65-0.770) and ChAdOx1 (IRR 0.91, 95% CI: 0.84-0.98); and similarly there was no increased risk for cerebral venous sinus thrombosis (CVST) for both BNT162b2 (IRR 0.87, 95% CI: 0.41-1.85) and ChAdOx1 (IRR 1.73, 95% CI: 0.82-3.68). We additionally report no difference in IRR for pulmonary embolus, and deep vein thrombosis, thrombocytopenia, including idiopathic thrombocytopenic purpura (ITP), and haemorrhagic events post second dose for both BNT162b2. Reassuringly, we found no associations between increased risk of thrombocytopenic, thromboembolic and haemorrhagic events post vaccination with second dose for either of these vaccines. Data and Connectivity: COVID-19 Vaccines Pharmacovigilance study

    An Overview of Approaches and Challenges for Retrieving Marine Inherent Optical Properties from Ocean Color Remote Sensing

    Get PDF
    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectancesthat can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namelythe ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a watermass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and itsdissolved and particulate constituents. Because of their dependence on the concentration and composition ofmarine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This informationis critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbonproduction and export, phytoplankton dynamics, and responses to climatic disturbances. Given their im-portance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products intothe community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., theglobal, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mis-sion), we present a synopsis of the current state of the art in the retrieval of these core optical properties.Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separatedbased their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated witheach approach are provided, as well as common performance metrics used to evaluate them. We discuss currentknowledge gaps and make recommendations for future investment for upcoming missions whose instrumentcharacteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches

    An Overview of Approaches and Challenges for Retrieving Marine Inherent Optical Properties from Ocean Color Remote Sensing

    Get PDF
    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches

    Potential Dissociative Glucocorticoid Receptor Activity for Protopanaxadiol and Protopanaxatriol

    Get PDF
    Glucocorticoids are steroid hormones that regulate inflammation, growth, metabolism, and apoptosis via their cognate receptor, the glucocorticoid receptor (GR). GR, acting mainly as a transcription factor, activates or represses the expression of a large number of target genes, among them, many genes of anti-inflammatory and pro-inflammatory molecules, respectively. Transrepression activity of glucocorticoids also accounts for their anti-inflammatory activity, rendering them the most widely prescribed drug in medicine. However, chronic and high-dose use of glucocorticoids is accompanied with many undesirable side effects, attributed predominantly to GR transactivation activity. Thus, there is a high need for selective GR agonist, capable of dissociating transrepression from transactivation activity. Protopanaxadiol and protopanaxatriol are triterpenoids that share structural and functional similarities with glucocorticoids. The molecular mechanism of their actions is unclear. In this study applying induced-fit docking analysis, luciferase assay, immunofluorescence, and Western blot analysis, we showed that protopanaxadiol and more effectively protopanaxatriol are capable of binding to GR to activate its nuclear translocation, and to suppress the nuclear factor-kappa beta activity in GR-positive HeLa and HEK293 cells, but not in GR-low level COS-7 cells. Interestingly, no transactivation activity was observed, whereas suppression of the dexamethasone-induced transactivation of GR and induction of apoptosis in HeLa and HepG2 cells were observed. Thus, our results indicate that protopanaxadiol and protopanaxatriol could be considered as potent and selective GR agonist

    Sorption of colored vs. noncolored organic matter by tidal marsh soils

    Get PDF
    Tidal marshes are significant sources of colored (or chromophoric) dissolved organic carbon (CDOC) to adjacent waters and, as a result, contribute substantially to their optical complexity and ultimately affect their water quality. Despite this, our mechanistic understanding of the processes that regulate the exchange and transformation of CDOC at the tidal marsh–estuarine interface remains limited. We hypothesized that tidal marsh soils regulate this exchange and transformation subject to soil mineralogy and salinity environment. To test this hypothesis, we generated initial mass sorption isotherms of CDOC and noncolored dissolved organic carbon (NCDOC) using anaerobic batch incubations of Great Dismal Swamp DOC with four tidal wetland soils, representing a range of organic carbon content (1.77 ± 0.12 % to 36.2 ± 2.2 %) and across four salinity treatments (0, 10, 20, and 35). CDOC sorption followed Langmuir isotherms that were similar in shape to those of total DOC, but with greater maximum sorption capacity and lower binding affinity. Like isotherms of total DOC, CDOC maximum sorption capacity increased and binding affinity decreased with greater salinity. Initial natively adsorbed colored organic carbon was low and increased with soil organic content. In contrast, NCDOC desorbed under all conditions with desorption increasing linearly with initial CDOC concentration. This suggests that for our test solutions CDOC displaced NCDOC on tidal marsh soils. Parallel factor analysis of 3-D excitation emission matrices and specific ultraviolet absorbance measurements suggested that CDOC sorption was driven primarily by the exchange of highly aromatic humic-like CDOC. Taken together, these results suggest that tidal marsh soils regulate export and composition of CDOC depending on the complex interplay between soil mineralogy, water salinity, and CDOC vs. NCDOC composition.</p
    • …
    corecore