12 research outputs found

    Quantifying the Dynamics of Bacterial Secondary Metabolites by Spectral Multiphoton Microscopy

    Get PDF
    Phenazines, a group of fluorescent small molecules produced by the bacterium Pseudomonas aeruginosa, play a role in maintaining cellular redox homeostasis. Phenazines have been challenging to study in vivo due to their redox activity, presence both intra- and extracellularly, and their diverse chemical properties. Here, we describe a noninvasive in vivo optical technique to monitor phenazine concentrations within bacterial cells using time-lapsed spectral multiphoton fluorescence microscopy. This technique enables simultaneous monitoring of multiple weakly fluorescent molecules (phenazines, siderophores, NAD(P)H) expressed by bacteria in culture. This work provides the first in vivo measurements of reduced phenazine concentration as well as the first description of the temporal dynamics of the phenazine-NAD(P)H redox system in Pseudomonas aeruginosa, illuminating an unanticipated role for 1-hydroxyphenazine. Similar approaches could be used to study the abundance and redox dynamics of a wide range of small molecules within bacteria, both as single cells and in communities

    Quantifying the surface chemistry of 3D matrices in situ

    Get PDF
    Despite the major role of the matrix (the insoluble environment around cells) in physiology and pathology, there are very few and limited methods that can quantify the surface chemistry of a 3D matrix such as a biomaterial or tissue ECM. This study describes a novel optical-based methodology that can quantify the surface chemistry (density of adhesion ligands for particular cell adhesion receptors) of a matrix in situ. The methodology utilizes fluorescent analogs (markers) of the receptor of interest and a series of binding assays, where the amount of bound markers on the matrix is quantified via spectral multi-photon imaging. The study provides preliminary results for the quantification of the ligands for the two major collagen-binding integrins (α[subscript 1]β[subscript 1], α[subscript 2]β[subscript 1]) in porous collagen scaffolds that have been shown to be able to induce maximum regeneration in transected peripheral nerves. The developed methodology opens the way for quantitative descriptions of the insoluble microenvironment of cells in physiology and pathology, and for integrating the matrix in quantitative models of cell signaling.National Institutes of Health (U.S.) (RO1 NS051320)Singapore-MIT Alliance for Research and Technolog

    Image informatics for studying signal transduction in cells interacting with 3D matrices

    Get PDF
    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.National Institutes of Health (U.S.) (RO1 NS051320)Singapore-MIT Alliance for Research and Technolog

    Mammals fail to regenerate organs when wound contraction drives scar formation

    No full text
    Abstract To understand why mammals generally do not regenerate injured organs, we considered the exceptional case of spontaneous skin regeneration in the early lamb fetus. Whereas during the early fetal stage skin wounds heal by regeneration, in the late fetal stage, and after birth, skin wounds close instead by scar formation. We review independent evidence that this switch in wound healing response coincides with the onset of wound contraction, which is also enabled during late fetal gestation. The crucial role of wound contraction in determining the wound healing outcome in adults has been demonstrated in three mammalian models of severe injury (excised guinea pig skin, transected rat sciatic nerve, excised rabbit conjunctival stroma) where grafting the injury with DRT, a contraction-blocking scaffold of highly-specific structure, altered significantly the wound healing outcome. While spontaneous healing resulted in scar formation in these animal models, DRT grafting significantly reduced the extent of wound contraction, prevented scar synthesis, and resulted in partial regeneration. These findings, as well as independent data from species that heal spontaneously via regeneration, point to a striking hypothesis: The process of regeneration lies dormant in mammals until appropriately activated by injury. In spontaneous wound healing of the late fetus and in adult mammals, wound contraction impedes such endogenous regeneration mechanisms. However, engineered treatments, such as DRT, that block wound contraction can cancel its effects and favor wound healing by regeneration instead of scar formation.</jats:p

    Microneurotrophin BNN27 Reduces Astrogliosis and Increases Density of Neurons and Implanted Neural Stem Cell-Derived Cells after Spinal Cord Injury

    No full text
    Microneurotrophins, small-molecule mimetics of endogenous neurotrophins, have demonstrated significant therapeutic effects on various animal models of neurological diseases. Nevertheless, their effects on central nervous system injuries remain unknown. Herein, we evaluate the effects of microneurotrophin BNN27, an NGF analog, in the mouse dorsal column crush spinal cord injury (SCI) model. BNN27 was delivered systemically either by itself or combined with neural stem cell (NSC)-seeded collagen-based scaffold grafts, demonstrated recently to improve locomotion performance in the same SCI model. Data validate the ability of NSC-seeded grafts to enhance locomotion recovery, neuronal cell integration with surrounding tissues, axonal elongation and angiogenesis. Our findings also show that systemic administration of BNN27 significantly reduced astrogliosis and increased neuron density in mice SCI lesion sites at 12 weeks post injury. Furthermore, when BNN27 administration was combined with NSC-seeded PCS grafts, BNN27 increased the density of survived implanted NSC-derived cells, possibly addressing a major challenge of NSC-based SCI treatments. In conclusion, this study provides evidence that small-molecule mimetics of endogenous neurotrophins can contribute to effective combinatorial treatments for SCI, by simultaneously regulating key events of SCI and supporting grafted cell therapies in the lesion site
    corecore