541 research outputs found
Fluorescence based detection of bioaerosols to improve emissions characterization from environmental sources
Bioaerosols are ubiquitous in ambient air but there have been increasing concerns about their human exposure and to
health impact due to ever increasing environmental emissions from sources such as biowaste and intensive agriculture
facilities (Borlée et al. 2015). However, the knowledge on their risk of exposure to the public is limited mainly due to a
lack of emission characterisation, in part due to the limitation of conventional methods for the detection and
characterisation of ambient bioaerosols. Among emerging techniques, fluorescence spectroscopy has shown promise in
detecting and broadly classifying bioaerosols (Pan et al. 2015). This paper provides the preliminary results of a study that
aims to demonstrate the potential of a fluorescence based bioaerosol sensor unit to detect and quantify these in real time
with a view to developing and advancing bioaerosol exposure assessment methodologies to various environmental
sources
Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition
peer-reviewedMicrobial enteropathogens can enter the environment via landspreading of animal slurries and manures. Biotic interactions with the soil microbial community can contribute to their subsequent decay. This study aimed to determine the relative impact of biotic, specifically microbial community structure, and physico-chemical properties associated with soils derived from 12 contrasting land-uses on enteropathogen survival. Phenotypic profiles of microbial communities (via phospholipid fatty acid (PLFA) profiling), and total biomass (by fumigation-extraction), in the soils were determined, as well as a range of physicochemical properties. The persistence of Salmonella Dublin, Listeria monocytogenes, and Escherichia coli was measured over 110 days within soil microcosms. Physicochemical and biotic data were used in stepwise regression analysis to determine the predominant factor related to pathogen-specific death rates. Phenotypic structure, associated with a diverse range of constituent PLFAs, was identified as the most significant factor in pathogen decay for S. Dublin, L. monocytogenes, non-toxigenic E. coli O157 but not for environmentally-persistent E. coli. This demonstrates the importance of entire community-scale interactions in pathogen suppression, and that such interactions are context-specific
Tube-side mass transfer for hollow fibre membrane contactors operated in the low Graetz range
Transformation of the tube-side mass transfer coefficient derived in hollow fibre membrane contactors (HFMC)
of different characteristic length scales (equivalent diameter and fibre length) has been studied when operated
in the low Graetz range (Gz < 10). Within the low Gz range, mass transfer is generally described by the Graetz
problem (Sh=3.67) which assumes that the concentration profile comprises a constant shape over the fibre
radius. In this study, it is experimentally evidenced that this assumption over predicts mass transfer within the
low Graetz range. Furthermore, within the low Gz range (below 2), a proportional relationship between the
experimentally determined mass transfer coefficient (Kov) and the Graetz number has been identified. For Gz
numbers below 2, the experimental Sh number approached unity, which suggests that mass transfer is strongly
dependent upon diffusion. However, within this diffusion controlled region of mass transfer, tube-side fluid
velocity remained important. For Gz numbers above 2, Sh could be satisfactorily described by extension to the
Lévêque solution, which can be ascribed to the constrained growth of the concentration boundary layer adjacent
to the fibre wall. Importantly this study demonstrates that whilst mass transfer in the low Graetz range does not
explicitly conform to either the Graetz problem or classical Lévêque solution, it is possible to transform the
experimentally derived overall mass transfer coefficient (Kov) between characteristic length scales (dh and L).
This was corroborated by comparison of the empirical relationship determined in this study (Sh=0.36Gz) with
previously published studies operated in the low Gz range. This analysis provides important insight for process
design when slow tube-side flows, or low Schmidt numbers (coincident with gases) constrain operation of
hollow fibre membrane contactors to the low Gz range
Rotating biological contactors for wastewater treatment - A review
Rotating biological contactors (RBCs) for wastewater treatment began in the 1970s. Removal of organic matter has been targeted within organic loading rates of up to 120 g m−2 d−1 with an optimum at around 15 g m−2 d−1 for combined BOD and ammonia removal. Full nitrification is achievable under appropriate process conditions with oxidation rates of up to 6 g m−2 d−1 reported for municipal wastewater. The RBC process has been adapted for denitrification with reported removal rates of up to 14 g m−2 d−1 with nitrogen rich wastewaters. Different media types can be used to improve organic/nitrogen loading rates through selecting for different bacterial groups. The RBC has been applied with only limited success for enhanced biological phosphorus removal and attained up to 70% total phosphorus removal. Compared to other biofilm processes, RBCs had 35% lower energy costs than trickling filters but higher demand than wetland systems. However, the land footprint for the same treatment is lower than these alternatives. The RBC process has been used for removal of priority pollutants such as pharmaceuticals and personal care products. The RBC system has been shown to eliminate 99% of faecal coliforms and the majority of other wastewater pathogens. Novel RBC reactors include systems for energy generation such as algae, methane production and microbial fuel cells for direct current generation. Issues such as scale up remain challenging for the future application of RBC technology and topics such as phosphorus removal and denitrification still require further research. High volumetric removal rate, solids retention, low footprint, hydraulic residence times are characteristics of RBCs. The RBC is therefore an ideal candidate for hybrid processes for upgrading works maximising efficiency of existing infrastructure and minimising energy consumption for nutrient removal. This review will provide a link between disciplines and discuss recent developments in RBC research and comparison of recent process designs are provided (Section 2). The microbial features of the RBC biofilm are highlighted (Section 3) and topics such as biological nitrogen removal and priority pollutant remediation are discussed (Sections 4 and 5). Developments in kinetics and modelling are highlighted (Section 6) and future research themes are mentioned
Recommended from our members
Monitoring bioaerosol and odour emissions from composting facilities - WR1121
Government policy requires that valuable resources should be recovered and recycled from biodegradable waste. A successful and growing organics recycling industry delivers this policy with composting being one of the principal technologies deployed to process suitable feedstock such as garden and food waste. Composting inevitably generates bioaerosols – particulate matter comprising cells or cellular components that are released into the air as a result of disturbance of composting feedstock or the processing of final product. Exposure to bioaerosols has the potential to be harmful to human and animal health. The Environment Agency adopts a precautionary and risk-based approach to the regulation of composting facilities which was developed on the basis of research by Wheeler et al. (2001) and which has been updated as new evidence has become available. The Environment Agency also requires site operators to monitor bioaerosols around their facilities using methods specified in a standard protocol which relies upon classical microbiology methods which are tried and tested but which are labour-intensive, slow and offer only a snapshot view of a highly dynamic system. A recent IOM review commissioned by Defra (Searl, 2009) on exposure-response relationships for bioaerosol emissions from waste treatment processes identified significant gaps in knowledge of exposure to bioaerosols and recommended that more research was needed into alternatives to viable microbial monitoring such as priority biomarkers (notably endotoxin) and potential surrogates such as particulate matter. The IOM review also concluded that there is a lack of information to support the development of appropriate stand-off distances.
The overall aim of this project was to provide evidence on bioaerosol production, dispersion and potential exposures from composting facilities in support of future developments in policy and regulation of biowaste facilities. The objectives were: (i) to undertake a comprehensive set of standard and novel bioaerosol measurements at representative composting sites to assess comparability between different methods and also to measure spatial and temporal variations; and (ii) to determine the odour emissions and then compare these with bioaerosol emissions to see if odour is a marker of significant bioaerosol exposure. Standard (AfOR, 2009) and novel (CEN filter method, endotoxin, glucan, qPCR, real-time particulates) bioaerosols measurements were taken on a minimum of three to a maximum of six occasions over a twelve month period at four different composting facilities in England. The composting facilities were selected to represent sites of varying sizes (tonnages) and to allow a comparison of bioaerosol concentrations at standard open windrow sites versus a fully-contained site. Additional supporting information was collected including meteorological data at the time of sampling, observation of site operations and measurements of odour at one of the sites. Supporting bioaerosol and odour dispersion modelling was conducted at the site where the odour measurements were made.
The spatial trend of bioaerosol concentrations described by Wheeler et al., (1991) and upon which EA regulatory policy is based was broadly corroborated by this dataset. Excursions above the EA acceptable levels at or beyond 250m from source were rare. Bioaerosol concentrations at the enclosed site were generally lower than at the open windrow sites. There was no evidence of a seasonal pattern in bioaerosol concentrations at any of the sites whereas between-sampling day variations were apparent. The cause(s) of these variations were not identified.
No consistent relationship was observed between the concentration of bioaerosols measured by the two AfOR standard methods. The two methods displayed certain strengths and weakness in different situations. The IOM sampling device proved to be better suited to situations where high bioaerosol concentrations were encountered (close to source); the Andersen proving to be more effective in the lower concentration range typically found upwind of a site or at distance downwind from source. The higher volume filtration device tested in this project (referred to as the CEN method) produced data that did not consistently match either of the AfOR standard methods. This device demonstrated greater sensitivity than the IOM filter method but suffered drawbacks associated with its weight and a lack of ease of use in the field.
Endotoxin concentrations were normally below the level recommended by the Dutch Expert Committee on Occupational Safety but occasional exceedances of this standard were detected at the larger open windrow sites. The majority of glucan measurements were below a widely referred to 10ng/m3 threshold. Significantly elevated concentrations were detected at one of the larger open windrow sites.
The dynamic range of the qPCR method is wider (4-5-log) than either of the AfOR and the CEN methods. It is also quicker to carry out and has the potential for automation. The results from the qPCR method are mainly higher than standard AfOR methods, as the method does not distinguish viable and non-viable spores. The spatial distribution of Aspergillus fumigatus spores (by qPCR) along sampling transects, gives similar results compared to AfOR (and CEN) methods. Real time particle detection showed that both TSP and PM10 are correlated to Aspergillus fumigatus spore concentration.
No consistent relationship was observed between odour and bioaerosol concentrations (although this was a limited dataset). The envelope of modelled (back-extrapolated) bioaerosol emission rates straddles several orders of magnitude. Distinguishing the influences of meteorological conditions on this variability was not possible. It was not possible to predict bioaerosol or odour emission rates with confidence. This continues to hamper confidence in modelling of odours and bioaerosols from open windrow facilities.
The findings of this research have implications for the current standard monitoring protocol which should be reviewed accordingly. The findings of this multi-site survey accord with existing regulatory policy and are supportive of the general trend towards enclosed facilities. Notwithstanding this, continuing research is needed to enhance the database on emission from bioaerosol and odour abatement technologies (e.g. biofilters); to determine the cause(s) of occasional bioaerosol peaks from open facilities; to improve exposure assessments through better modelling protocols; and to link enhanced exposure information to future health impact studies
Recommended from our members
Towards improved bioaerosol model validation and verification
Bioaerosols, comprised of bacteria, fungi and viruses are ubiquitous in ambient air. Known to adversely affect human health, the impact of bioaerosols on a population often manifests as outbreaks of illnesses such as Legionnaires Disease and Q fever, although the concentrations and environmental conditions in which these impacts occur are not well understood. Bioaerosol concentrations vary from source to source, but specific industrialised human activities such as water treatment, intensive agriculture and open windrow composting facilitate the generation of bioaerosol concentrations many times higher than natural background levels. Bioaerosol sampling is currently undertaken according to the requirements of the Environment Agency’s regulatory framework, in which the collection of bioaerosols and not its long-term measurement is of most importance. As a consequence, sampling devices are often moved around site according to changing wind direction and sampling intervals are invariably short-term. The dispersion modelling of bioaerosols from composting facilities typically relies on proxy pollutant parameters. In addition, the use of short term emission data gathering strategies in which monitors are moved frequently with wind direction, do not provide a robust reliable and repeatable dataset by which to validate any modelling or to verify its performance. New sampling methods such as the Spectral Intensity Bioaerosol Sensor (SIBS) provide an opportunity to address several gaps in bioaerosol model validation and verification. In the context of model validation, this paper sets out the current weaknesses in bioaerosol monitoring from the perspective of robust modelling requirements
Scoping studies to establish the capability and utility of a real-time bioaerosol sensor to characterise emissions from environmental sources
A novel dual excitation wavelength based bioaerosol sensor with multiple fluorescence bands called Spectral Intensity Bioaerosol Sensor (SIBS) has been assessed across five contrasting outdoor environments. The mean concentrations of total and fluorescent particles across the sites were highly variable being the highest at the agricultural farm (2.6 cm−3 and 0.48 cm−3, respectively) and the composting site (2.32 cm−3 and 0.46 cm−3, respectively) and the lowest at the dairy farm (1.03 cm−3 and 0.24 cm−3, respectively) and the sewage treatment works (1.03 cm−3 and 0.25 cm−3, respectively). In contrast, the number-weighted fluorescent fraction was lowest at the agricultural site (0.18) in comparison to the other sites indicating high variability in nature and magnitude of emissions from environmental sources. The fluorescence emissions data demonstrated that the spectra at different sites were multimodal with intensity differences largely at wavelengths located in secondary emission peaks for λex 280 and λex 370. This finding suggests differences in the molecular composition of emissions at these sites which can help to identify distinct fluorescence signature of different environmental sources. Overall this study demonstrated that SIBS provides additional spectral information compared to existing instruments and capability to resolve spectrally integrated signals from relevant biological fluorophores could improve selectivity and thus enhance discrimination and classification strategies for real-time characterisation of bioaerosols from environmental sources. However, detailed lab-based measurements in conjunction with real-world studies and improved numerical methods are required to optimise and validate these highly resolved spectral signatures with respect to the diverse atmospherically relevant biological fluorophores
Sampling microbial volatile organic compounds: optimisation of flow rate and sampling time
The impact of bioaerosols emissions from urban, agricultural and industrial environments on local air quality is of growing policy concern. However, there is no standardised protocol established yet, despite a large number of bioaerosols sampling methods in use. Additionally, capturing sufficient amounts of material to allow reproducible separation and detection of molecular patterns is still difficult. Chemical fingerprint analysis of microbial volatile organic compounds (MVOC) is a potentially rapid and reproducible approach for the early detection and identification of outdoor contamination as it has been shown to be a successful approach for indoor environments and it can be done on a fine-scale, allowing the identification of species-specific volatiles that may serve as marker compounds for the selective detection of pathogens. In this study we have tested the number and concentration of MVOCs collected using different sampling conditions: 10 min sampling time with variable flow rate (100, 500 and 1000 ml min–1) and 100 ml min–1 flow rate during 10, 20 and 30 min using Tenax®-Carbotrap thermal desorption (TD) tubes attached to portable GilAir® air pumps. Our aim was to determine the best sampling conditions in order to get enough material allowing reproducible data of the microbial markers present in outdoor environments. Substantial loses (>50%) of MVOCs occurred when sampling at flow rates higher than 100 ml min–1. 10 min sampling time allowed the collection of most of the MVOCs present in the air (~96%). The optimal sampling settings that allowed the collection of higher concentrations of MVOCs without breakthrough was 10 min sampling at 100 ml min–1 flow rate. Ketones were the predominant group of MVOCs identified in the WWTP (34–42%), acetone being the compound present at higher concentration (6476–11731 ng m–3)
Report drawn up on behalf of the Legal Affairs Committee on the proposal from the Commission of the European Communities to the Council (Doc. 1-1213/82 - COM(82) 861 final) for a Regulation on the security to be given to ensure payment of a customs debt. Working Documents 1983-1984, Document 1-1356/83, 3 February 1984
- …
