33 research outputs found

    Long-term annual and monthly changes in mysids and caridean decapods in a macrotidal estuarine environment in relation to climate change and pollution

    Get PDF
    © 2018 Elsevier B.V. A 26-year time series of monthly samples from the water intake of a power station has been used to analyse the trends exhibited by number of species, total abundance, and composition of the mysids and caridean decapods in the inner Bristol Channel. During this period, annual water temperatures, salinities and the North Atlantic Oscillation Index (NAOI) in winter did not change significantly, whereas annual NAOI declined. Annual mean monthly values for the number of species and total abundance both increased over the 26 years, but these changes were not correlated with any of the measured physico-chemical/climatic factors. As previous studies demonstrated that, during a similar period, metal concentrations in the Severn Estuary and Bristol Channel (into which that estuary discharges) declined and water quality increased, it is proposed that the above changes are due to an improved environment. The fauna was dominated by the mysids Mesopodopsis slabberi and Schistomysis spiritus, which collectively contributed 94% to total abundance. Both species, which were represented by juveniles, males, non-brooding females and brooding females, underwent statistically-indistinguishable patterns of change in abundance over the 26 years. When analysis was based on the abundances of the various species, the overall species composition differed significantly among years and changed serially with year. When abundances were converted to percentage compositions, this pattern of seriation broke down, demonstrating that changes in abundance and not percentage composition were responsible for the seriation. As with the number and abundance of species, changes in composition over the 26 years were not related to any of the physico-chemical/climatic factors tested. Species composition changed monthly in a pronounced cyclical manner throughout the year, due to statistically different time-staggered changes in the abundance of each species. This cyclicity was related most strongly to salinity

    The use of taxonomic relationships among species in applied ecological research: Baseline, steps forward and future challenges

    Get PDF
    Taxonomy is more than a mere exercise of nomenclature and classification of biological diversity: it profiles the identity of species by investigating their biological and ecological traits. Taxonomy is intimately related to ecology which, in turn, cannot be a mere exercise in describing ecological patterns, but instead requires deep knowledge of species’ biological structures, roles, interactions and functions. Thus, the study of taxonomic and phylogenetic relatedness of species is of paramount importance in ecological research, enabling insights into potential evolutionary patterns and processes, allowing a more comprehensive view of biodiversity, and providing opportunities to improve the assessment and monitoring of ecological changes in time and space. The work of K. Robert (‘Bob’) Clarke forged new pathways in this direction, providing new ideas and statistical tools to include and exploit taxonomic relationships in applied marine ecological studies and beyond, also inspiring the next generation of ecologists. In this short review, we synthesise the application and development of these tools and concepts in marine biodiversity research over the last three decades and suggest future pathways in this evolving field

    Sediment accumulation and resuspension in the Vasse-Wonnerup Wetlands and its relationship to internal nutrient cycling. Report for the South West Catchments Council

    No full text
    Abstract—In recent work, two different methods have been used to characterize the fundamental limits of compressed sensing. On the one hand are rigorous bounds based on informationtheoretic arguments or the analysis of specific algorithms. On the other hand are exact but heuristic predictions made using the replica method from statistical physics. In this paper, it is shown that, for certain problem settings, these bounds are in agreement, and thus provide a rigorous and accurate characterization of the compressed sensing problem. This characterization shows that the limits of sparse recovery can be quantified succinctly in terms of an effective signal-to-interference-plus-noise ratio, that depends on the number of measurements and the behavior of the sparse components themselves. Connections with the MMSE dimension by Wu and Verdu and minimax behavior of approximate message passing by Donoho et al. are discussed. I

    Baseline survey of the fish fauna of a highly eutrophic estuary and evidence for its colonisation by Goldfish (Carassius auratus)

    Get PDF
    Abstract This study represents the first quantitative survey of the fish fauna of the highly eutrophic Vasse and Wonnerup estuaries, part of the Ramsar-listed Vasse-Wonnerup Wetland System in south-western Australia. Sampling at five sites in each of these estuaries occurred in January 2012 (austral summer) to provide a species inventory and determine whether the number of species, total density and fish community composition differed between the two water bodies. A total of 18,148 fish were recorded, representing six species across four families. Three species that can complete their life cycle within estuaries, i.e. the atherinids Lepthatherina wallacei and Atherinosoma elongata and the gobiid Pseudogobius olorum, dominated the fish fauna, accounting for >99% of all fish collected. No significant inter-estuary differences were observed in the mean number of species, mean total density or fish community composition. Although the fish community was depauperate in terms of the number of species, total density was high, reflecting the presence of permanent and seasonal barriers to the immigration of marine species into these estuaries and the highly productive nature of this system, respectively. Two introduced freshwater species, i.e. the Eastern Gambusia Gambusia holbrooki and the Goldfish, Carassius auratus, were recorded in the Vasse Estuary. As C. auratus was found in mesohaline conditions, individuals may be able to use the estuary as a ‘saltbridge’ to gain access to other tributaries and/or the Wonnerup Estuary, and thus expand their distribution. These findings are of concern given the potential deleterious biological and ecological effects of these alien species

    Differences in Recreational Fishers’ Motivations for Utilising Two Estuarine Fisheries

    No full text
    Effective fisheries management requires an understanding of human dimensions. This study elicited the salient motivations for recreational blue swimmer crab and black bream fishing in Western Australia and whether these views differed depending on the fishing location and/or the characteristics of the fisher. Crab fishers were strongly consumption-orientated and aimed to “catch big crabs” and “catch enough crabs to eat”. Furthermore, 91% consumed their catch, with only 2% practicing catch-and-release fishing. In contrast, 81% of black bream fishers did so for the sport/challenge, with the strongest motivation being to catch a bream considerably above legal size and with food only selected by 15% of respondents; most fishers released caught fish. The marked differences between the fisheries for the two species, which co-occur in the same estuaries, are likely driven by the accessible nature of the crab fishery, ease of catching crabs, the low cost of fishing equipment, and their taste. Fishing for black bream, however, requires more expensive equipment, patience, and a greater skill level. Fishers considered crabbing to be as important as other fishing and outdoor activities, whereas bream fishers considered bream fishing considerably more important, reflecting the trophy nature of this fishery
    corecore