12 research outputs found

    Roles of Conserved Ectodomain Cysteines of the Rat P2X4 Purinoreceptor in Agonist Binding and Channel Gating

    Get PDF
    Mammalian P2X receptors contain 10 conserved cysteine residues in their ectodomains, which form five disulfide bonds (SS1-5). Here, we analyzed the relevance of these disulfide pairs in rat P2X4 receptor function by replacing one or both cysteines with alanine or threonine, expressing receptors in HEK293 cells and studying their responsiveness to ATP in the absence and presence of ivermectin, an allostenic modulator of these channels. Response to ATP was not altered when both cysteines forming the SS3 bond (C132-C159) were replaced with threonines. Replacement of SS1 (C116-C165), SS2 (C126-C149) and SS4 (C217-C227), but not SS5 (C261-C270), cysteine pairs with threonines resulted in decreased sensitivity to ATP and faster deactivation times. The maximum current amplitude was reduced in SS2, SS4 and SS5 double mutants and could be partially rescued by ivermectin in SS2 and SS5 double mutants. This response pattern was also observed in numerous single residue mutants, but receptor function was not affected when the 217 cysteine was replaced with threonine or arginine or when the 261 cysteine was replaced with alanine. These results suggest that the SS1, SS2 and SS4 bonds contribute substantially to the structure of the ligand binding pocket, while the SS5 bond located towards the transmembrane domain contributes to receptor gating

    Role of the ectodomain serine 275 in shaping the binding pocket of the ATP-gated P2X3 receptor

    Get PDF
    ATP-activated P2X3 receptors expressed in nociceptive sensory neurons play an important role in pain signaling. Basic properties of this receptor subtype, including very strong desensitization, depend on the rate of dissociation of the agonist from the binding site. Even though the rough structure of the ATP binding site has been proposed on the basis of the X-ray structure of the zebrafish P2X4 receptor and mutagenesis studies, the fine subunit-specific structural properties predisposing the receptor to tight capture of the agonist inside the binding pocket have not been elucidated. In this work, by exploring in silico the functional role for the left flipper located in the ectodomain region, we identified within this loop a candidate residue S275, which could contribute to the closure of the agonist-binding pocket. Testing of the S275 mutants using the patch-clamp technique revealed a crucial role for S275 in agonist binding and receptor desensitization. The S275A mutant showed a reduced rate of onset of desensitization and accelerated resensitization and was weakly inhibited by nanomolar agonist. Extracellular calcium application produced inhibition instead of facilitation of membrane currents. Moreover, some full agonists became only partial agonists when applied to the S275A receptor. These effects were stronger with the more hydrophobic mutants S275C and S275V. Taken together, our data suggest that S275 contributes to the closure of the agonist-binding pocket and that effective capture of the agonist provided by the left flipper in calcium-dependent manner determines the high rate of desensitization, slow recovery, and sensitivity to nanomolar agonist of the P2X3 receptor. © 2011 American Chemical Society

    Role of the ectodomain serine 275 in shaping the binding pocket of the ATP-gated P2X3 receptor

    No full text
    ATP-activated P2X3 receptors expressed in nociceptive sensory neurons play an important role in pain signaling. Basic properties of this receptor subtype, including very strong desensitization, depend on the rate of dissociation of the agonist from the binding site. Even though the rough structure of the ATP binding site has been proposed on the basis of the X-ray structure of the zebrafish P2X4 receptor and mutagenesis studies, the fine subunit-specific structural properties predisposing the receptor to tight capture of the agonist inside the binding pocket have not been elucidated. In this work, by exploring in silico the functional role for the left flipper located in the ectodomain region, we identified within this loop a candidate residue S275, which could contribute to the closure of the agonist-binding pocket. Testing of the S275 mutants using the patch-clamp technique revealed a crucial role for S275 in agonist binding and receptor desensitization. The S275A mutant showed a reduced rate of onset of desensitization and accelerated resensitization and was weakly inhibited by nanomolar agonist. Extracellular calcium application produced inhibition instead of facilitation of membrane currents. Moreover, some full agonists became only partial agonists when applied to the S275A receptor. These effects were stronger with the more hydrophobic mutants S275C and S275V. Taken together, our data suggest that S275 contributes to the closure of the agonist-binding pocket and that effective capture of the agonist provided by the left flipper in calcium-dependent manner determines the high rate of desensitization, slow recovery, and sensitivity to nanomolar agonist of the P2X3 receptor. © 2011 American Chemical Society

    Role of the ectodomain serine 275 in shaping the binding pocket of the ATP-gated P2X3 receptor

    No full text
    ATP-activated P2X3 receptors expressed in nociceptive sensory neurons play an important role in pain signaling. Basic properties of this receptor subtype, including very strong desensitization, depend on the rate of dissociation of the agonist from the binding site. Even though the rough structure of the ATP binding site has been proposed on the basis of the X-ray structure of the zebrafish P2X4 receptor and mutagenesis studies, the fine subunit-specific structural properties predisposing the receptor to tight capture of the agonist inside the binding pocket have not been elucidated. In this work, by exploring in silico the functional role for the left flipper located in the ectodomain region, we identified within this loop a candidate residue S275, which could contribute to the closure of the agonist-binding pocket. Testing of the S275 mutants using the patch-clamp technique revealed a crucial role for S275 in agonist binding and receptor desensitization. The S275A mutant showed a reduced rate of onset of desensitization and accelerated resensitization and was weakly inhibited by nanomolar agonist. Extracellular calcium application produced inhibition instead of facilitation of membrane currents. Moreover, some full agonists became only partial agonists when applied to the S275A receptor. These effects were stronger with the more hydrophobic mutants S275C and S275V. Taken together, our data suggest that S275 contributes to the closure of the agonist-binding pocket and that effective capture of the agonist provided by the left flipper in calcium-dependent manner determines the high rate of desensitization, slow recovery, and sensitivity to nanomolar agonist of the P2X3 receptor. © 2011 American Chemical Society

    Role of the ectodomain serine 275 in shaping the binding pocket of the ATP-gated P2X3 receptor

    Get PDF
    ATP-activated P2X3 receptors expressed in nociceptive sensory neurons play an important role in pain signaling. Basic properties of this receptor subtype, including very strong desensitization, depend on the rate of dissociation of the agonist from the binding site. Even though the rough structure of the ATP binding site has been proposed on the basis of the X-ray structure of the zebrafish P2X4 receptor and mutagenesis studies, the fine subunit-specific structural properties predisposing the receptor to tight capture of the agonist inside the binding pocket have not been elucidated. In this work, by exploring in silico the functional role for the left flipper located in the ectodomain region, we identified within this loop a candidate residue S275, which could contribute to the closure of the agonist-binding pocket. Testing of the S275 mutants using the patch-clamp technique revealed a crucial role for S275 in agonist binding and receptor desensitization. The S275A mutant showed a reduced rate of onset of desensitization and accelerated resensitization and was weakly inhibited by nanomolar agonist. Extracellular calcium application produced inhibition instead of facilitation of membrane currents. Moreover, some full agonists became only partial agonists when applied to the S275A receptor. These effects were stronger with the more hydrophobic mutants S275C and S275V. Taken together, our data suggest that S275 contributes to the closure of the agonist-binding pocket and that effective capture of the agonist provided by the left flipper in calcium-dependent manner determines the high rate of desensitization, slow recovery, and sensitivity to nanomolar agonist of the P2X3 receptor. © 2011 American Chemical Society
    corecore