8 research outputs found

    A procedural procedural level generator generator

    Get PDF
    Procedural content generation (PCG) is concerned with automatically generating game content, such as levels, rules, textures and items. But could the content generator itself be seen as content, and thus generated automatically? This would be very useful if one wanted to avoid writing a content generator for a new game, or if one wanted to create a content generator that generates an arbitrary amount of content with a particular style or theme. In this paper, we present a procedural procedural level generator generator for Super Mario Bros. It is an interactive evolutionary algorithm that evolves agent based level generators. The human user makes the aesthetic judgment on what generators to prefer, based on several views of the generated levels including a possibility to play them, and a simulation-based estimate of the playability of the levels. We investigate the characteristics of the generated levels, and to what extent there is similarity or dissimilarity between levels and between generators.peer-reviewe

    In Situ Detection of Active Edge Sites in Single-Layer MoS2_2 Catalysts

    Full text link
    MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and hydrogen evolution, but unravelling their atomic-scale structure under catalytic working conditions has remained significantly challenging. Ambient pressure X-ray Photoelectron Spectroscopy (AP-XPS) allows us to follow in-situ the formation of the catalytically relevant MoS2 edge sites in their active state. The XPS fingerprint is described by independent contributions to the Mo3d core level spectrum whose relative intensity is sensitive to the thermodynamic conditions. Density Functional Theory (DFT) is used to model the triangular MoS2 particles on Au(111) and identify the particular sulphidation state of the edge sites. A consistent picture emerges in which the core level shifts for the edge Mo atoms evolve counter-intuitively towards higher binding energies when the active edges are reduced. The shift is explained by a surprising alteration in the metallic character of the edge sites, which is a distinct spectroscopic signature of the MoS2 edges under working conditions
    corecore