23 research outputs found

    Signal Transduction Mechanisms Mediating the Regulation of Vascular G Protein-Coupled Receptors

    Get PDF
    Blood pressure homeostasis is controlled via a complex network of cell signaling mechanisms. Among the broad network of receptors and signaling molecules regulating blood vessel reactivity, members of the G protein-coupled receptor (GPCR) family are known to play a central role. GPCR activity represents a delicate, but coordinated balance between molecular mechanisms governing receptor signaling, desensitization, and re-sensitization. GPCR kinase 2 (GRK2) modulates multiple cellular responses through GPCR desensitization and alterations in GRK2 activity are considered to play an important role in the development of hypertension. The main premise of our study was to test whether the inhibition of GRK2 expression leads to alterations in vascular reactivity, vascular tone, and vascular smooth muscle cell (VSMC) signaling. Genetic knockdown of GRK2 expression results in a mouse that shows indications of intrauterine growth retardation phenotype and becomes spontaneously hypertensive at 8-12 weeks of age due to alterations in the balance between mechanisms regulating vasodilatation and vasoconstriction. The extensive loss of GRK2 expression favors an increased in vasoconstriction associated with an increase in peripheral resistance and this is likely due to the reduced Gαq/11-coupled receptor desensitization. The vasodilatation in response to GαS-coupled receptor stimulation was also enhanced, but the increases in vasoconstrictor mechanisms dominate the physiological phenotype. In addition, VSMCs cultured from shGRK2-knockdown mice demonstrate an altered ERK1/2 and Akt/PKB signaling with age, as well as age-dependent increases in cellular proliferation and migration responses linked to Gαq/11-coupled GPCR activation. Our results indicate that, as blood pressure increases in the shGRK2 mice, the expression of renal renin angiotensin system (RAS) components increases correspondingly and this has a strong impact on the regulation of both peripheral vascular resistance and sodium balance. The chronic activation of RAS also potentiates renal injury by inducing alteration in glomerular filtration rates and progression of renal fibrosis. Thereby, these intricate effects complement each other in the onset of hypertension. Finally, to enable definition of the role of Rab4GTPase on GPCRs re-sensitization, we have developed a vascular specific inhibitory Rab2S22N transgenic mouse and the documentation of the hypertensive phenotype is the first evidence for the existence of a causal relationship between alteration in Rab4 activity and vascular GPCR signaling. Taken together, our findings indicate that the balance between mechanisms regulating vascular tone is significantly modulated by intracellular regulatory proteins underlying GPCR signal transduction

    THE ROLE OF CCL21/CCR7 CHEMOKINE AXIS IN VEGF-C MEDIATED BREAST CANCER INDUCED LYMPHANGIOGENESIS

    Get PDF
    Although the molecular mechanisms underlying lymphangiogenesis associated with breast cancer continue to remain insufficiently understood, a growing body of evidence suggests that many of the currently unknown answers revolve around the crosstalk between the lymphangiogenic factor VEGF-C and chemokines. The present study proposed the CCL21/CCR7 chemokine axis as a regulatory mechanism of VEGF-C mediated breast cancer-induced lymphangiogenesis. In order to address the hypothesis, the positive correlations between CCR7 signalling and VEGF-C expression/secretion by MDA-MB-231 cells were sought, along with the molecular mechanism underlying their correlation. Furthermore, the direct effect of CCL21/CCR7 interaction on lymphatic endothelial cells (LECs) was tested through a series of in vitro lymphangiogenic assays. CCL21/CCR7 axis has been found to regulate lymphangiogenesis in two distinct ways: i) directly, through stimulation of the lymphangiogenic traits of LECs; and ii) indirectly, through the promotion of VEGF-C secretion by breast cancer cells. These results suggest a novel role of the CCL21/CCR7 axis in the promotion of breast cancer-induced lymphangiogenesis

    The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis

    Get PDF
    Background: Tumor-induced lymphangiogenesis facilitates breast cancer progression by generating new lymphatic vessels that serve as conduits for tumor dissemination to lymph nodes and beyond. Given the recent evidence suggesting the implication of C-C chemokine ligand 21/chemokine receptor 7 (CCL21/CCR7) in lymph node metastasis, the aim of our study was to define the role of this chemokine pair in breast cancer-associated lymphangiogenesis. Methods: The expression analysis of CCL21/CCR7 pair and lymphatic endothelial cell (LEC) markers in breast cancer specimens was performed by means of quantitative real-time PCR. By utilizing CCR7 and CCL21 gene manipulated breast cancer cell implants into orthotopic sites of nude mice, lymphatic vessel formation was assessed through quantitative real-time PCR, immunohistochemistry and immunofluorescence assays. Finally, the lymphangiogenic potential of CCL21/CCR7 was assessed in vitro with primary LECs through separate functional assays, each attempting to mimic different stages of the lymphangiogenic process. Results: We found that CCR7 mRNA expression in human breast cancer tissues positively correlates with the expression of lymphatic endothelial markers LYVE-1, podoplanin, Prox-1, and vascular endothelial growth factor-C (VEGF-C). We demonstrated that the expression of CCL21/CCR7 by breast cancer cells has the ability to promote tumor-induced lymph-vascular recruitment in vivo. In vitro, CCL21/CCR7 chemokine axis regulates the expression and secretion of lymphangiogenic factor VEGF-C and thereby promotes proliferation, migration, as well as tube formation of the primary human LECs. Finally, we showed that protein kinase B (AKT) signaling pathway is the intracellular mechanism of CCR7-mediated VEGF-C secretion by human breast cancer cells. Conclusions: These results reveal that CCR7 and VEGF-C display a significant crosstalk and suggest a novel role of the CCL21/CCR7 chemokine axis in the promotion of breast cancer-induced lymphangiogenesis

    PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells

    Get PDF
    Background: Lymphatic metastasis, facilitated by lymphangiogenesis is a common occurrence in breast cancer, the molecular mechanisms remaining incompletely understood. We had earlier shown that cyclooxygenase (COX)-2 expression by human or murine breast cancer cells promoted lymphangiogenesis and lymphatic metastasis by upregulating VEGF-C/D production by tumor cells or tumor-associated macrophages primarily due to activation of the prostaglandin receptor EP4 by endogenous PGE2. It is not clear whether tumor or host-derived PGE2 has any direct effect on lymphangiogenesis, and if so, whether EP4 receptors on lymphatic endothelial cells (LEC) play any role. Methods: Here, we address these questions employing in vitro studies with a COX-2-expressing and VEGF-C/D-producing murine breast cancer cell line C3L5 and a rat mesenteric (RM) LEC line and in vivo studies in nude mice. Results: RMLEC responded to PGE2, an EP4 agonist PGE1OH, or C3L5 cell-conditioned media (C3L5-CM) by increased proliferation, migration and accelerated tube formation on growth factor reduced Matrigel. Native tube formation by RMLEC on Matrigel was abrogated in the presence of a selective COX-2 inhibitor or an EP4 antagonist. Addition of PGE2 or EP4 agonist, or C3L5-CM individually in the presence of COX-2 inhibitor, or EP4 antagonist, restored tube formation, reinforcing the role of EP4 on RMLEC in tubulogenesis. These results were partially duplicated with a human dermal LEC (HMVEC-dLyAd) and a COX-2 expressing human breast cancer cell line MDA-MB-231. Knocking down EP4 with shRNA in RMLEC abrogated their tube forming capacity on Matrigel in the absence or presence of PGE2, EP4 agonist, or C3L5-CM. RMLEC tubulogenesis following EP4 activation by agonist treatment was dependent on PI3K/Akt and Erk signaling pathways and VEGFR-3 stimulation. Finally in a directed in vivo lymphangiogenesis assay (DIVLA) we demonstrated the lymphangiogenic as well as angiogenic capacity of PGE2 and EP4 agonist in vivo. Discussion/conclusions: These results demonstrate the roles of tumor as well as host-derived PGE2 in inducing lymphangiogenesis, at least in part, by activating EP4 and VEGFR-3 on LEC. EP4 being a common target on both tumor and host cells contributing to tumor-associated lymphangiogenesis reaffirms the therapeutic value of EP4 antagonists in the intervention of lymphatic metastasis in breast cancer

    Co-expression of α9β1 integrin and VEGF-D confers lymphatic metastatic ability to a human breast cancer cell line MDA-MB-468LN

    Get PDF
    Introduction and Objectives: Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice. Results: A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely abrogated by stable knock-down of either VEGF-D or α9 in 468LN cells. Conclusion: Differential capacity for VEGF-D production and α9β1 integrin expression by 468LN cells jointly contributed to their lymphatic metastatic phenotype. © 2012 Majumder et al

    COX-2 Induces Breast Cancer Stem Cells via EP4/PI3K/AKT/NOTCH/WNT Axis

    Get PDF
    Cancer stem-like cells (SLC) resist conventional therapies, necessitating searches for SLC-specific targets. We established that cyclo-oxygenase(COX)-2 expression promotes human breast cancer progression by activation of the prostaglandin(PG)E-2 receptor EP4. Present study revealed that COX-2 induces SLCs by EP4-mediated NOTCH/WNT signaling. Ectopic COX-2 over-expression in MCF-7 and SKBR-3 cell lines resulted in: increased migration/invasion/proliferation, epithelial-mesenchymal transition (EMT), elevated SLCs (spheroid formation), increased ALDH activity and colocalization of COX-2 and SLC markers (ALDH1A, CD44, β-Catenin, NANOG, OCT3/4, SOX-2) in spheroids. These changes were reversed with COX-2-inhibitor or EP4-antagonist (EP4A), indicating dependence on COX-2/EP4 activities. COX-2 over-expression or EP4-agonist treatments of COX-2-low cells caused up-regulation of NOTCH/WNT genes, blocked with PI3K/AKT inhibitors. NOTCH/WNT inhibitors also blocked COX-2/EP4 induced SLC induction. Microarray analysis showed up-regulation of numerous SLC-regulatory and EMT-associated genes. MCF-7-COX-2 cells showed increased mammary tumorigenicity and spontaneous multiorgan metastases in NOD/SCID/IL-2Rγ-null mice for successive generations with limiting cell inocula. These tumors showed up-regulation of VEGF-A/C/D, Vimentin and phospho-AKT, down-regulation of E-Cadherin and enrichment of SLC marker positive and spheroid forming cells. MCF-7-COX-2 cells also showed increased lung colonization in NOD/SCID/GUSB-null mice, an effect reversed with EP4-knockdown or EP4A treatment of the MCF-7-COX-2 cells. COX-2/EP4/ALDH1A mRNA expression in human breast cancer tissues were highly correlated with one other, more marked in progressive stage of disease. In situ immunostaining of human breast tumor tissues revealed co-localization of SLC markers with COX-2, supporting COX-2 inducing SLCs. High COX-2/EP4 mRNA expression was linked with reduced survival. Thus, EP4 represents a novel SLC-ablative target in human breast cancer. Stem Cells 2016;34:2290–2305

    Differential regulation of β2-adrenoceptor and adenosine A2B receptor signalling by GRK and arrestin proteins in arterial smooth muscle

    Get PDF
    Generation of cAMP through Gs-coupled G protein-coupled receptor (GPCR) [e.g. β2-adrenoceptor (β2AR), adenosine A2B receptor (A2BR)] activation, induces arterial smooth muscle relaxation, counteracting the actions of vasoconstrictors. Gs-coupled GPCR signalling is regulated by G protein-coupled receptor kinases (GRK) and arrestin proteins, and dysregulation of Gs/GPCR signalling is thought play a role in the development of hypertension, which may be a consequence of enhanced GRK2 and/or arrestin expression. However, despite numerous studies indicating that β2AR and A2BR can be substrates for GRK/arrestin proteins, currently little is known regarding GRK/arrestin regulation of these endogenous receptors in arterial smooth muscle. Here, endogenous GRK isoenzymes and arrestin proteins were selectively depleted using RNA-interference in rat arterial smooth muscle cells (RASM) and the consequences of this for β2AR- and A2BR-mediated adenylyl cyclase (AC) signalling were determined by assessing cAMP accumulation. GRK2 or GRK5 depletion enhanced and prolonged β2AR/AC signalling, while combined deletion of GRK2/5 has an additive effect. Conversely, activation of AC by A2BR was regulated by GRK5, but not GRK2. β2AR desensitization was attenuated following combined GRK2/GRK5 knockdown, but not by depletion of individual GRKs, arrestins, or by inhibiting PKA. Arrestin3 (but not arrestin2) depletion enhanced A2BR-AC signalling and attenuated A2BR desensitization, while β2AR-AC signalling was regulated by both arrestin isoforms. This study provides a first demonstration of how different complements of GRK and arrestin proteins contribute to the regulation of signalling and desensitization of these important receptors mediating vasodilator responses in arterial smooth muscle

    Co-Expression of α9β1 Integrin and VEGF-D Confers Lymphatic Metastatic Ability to a Human Breast Cancer Cell Line MDA-MB-468LN

    Get PDF
    INTRODUCTION AND OBJECTIVES: Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice. RESULTS: A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely abrogated by stable knock-down of either VEGF-D or α9 in 468LN cells. CONCLUSION: Differential capacity for VEGF-D production and α9β1 integrin expression by 468LN cells jointly contributed to their lymphatic metastatic phenotype

    Immune Responses to Peptides Containing Homocitrulline or Citrulline in the DR4-Transgenic Mouse Model of Rheumatoid Arthritis

    No full text
    Antibodies to proteins/peptides containing citrulline are hallmarks of Rheumatoid Arthritis (RA). These antibodies are strongly associated with the expression of the Shared Epitope (SE). RA patients also generate antibodies to homocitrulline-containing proteins/peptides (also referred to as anti-carbamylated protein antibodies (Anti-CarP)). This study was undertaken to investigate the relationship between homocitrulline and citrulline immune responses using an established mouse model of RA: DR4-transgenic (DR4tg) mice that express the human SE. C57BL/6 (B6) and DR4tg (on a B6 background) mice were immunized subcutaneously with a homocitrullinated peptide (HomoCitJED). Splenic T cell proliferation was evaluated by 3H-thymidine incorporation assay. Antibodies to homocitrullinated and citrullinated antigens were screened by enzyme-linked immunosorbent assay (ELISA). Antibody cross-reactivity was examined by inhibition with HomoCitJED and its citrullinated counterpart peptide, CitJED (the number of homocitrullines in HomoCitJED is equal to the number of citrullines in CitJED). HomoCitJED-immunized DR4tg mice developed early T and B cell responses to HomoCitJED and late responses to CitJED. These mice also developed anti-CCP2 antibodies. In some mice, antibodies to HomoCitJED were also reactive to CitJED. B6 mice immunized with HomoCitJED developed late T and B cell responses to HomoCitJED, but did not generate responses to citrullinated antigens. Unlike DR4tg mice, anti-HomoCitJED antibodies from B6 mice did not react to CitJED. In conclusion, DR4tg mice immunized with HomoCitJED developed immune responses to CitJED, indicating cross-reactivity. CitJED immune responses were dependent on the SE. HomoCitJED responses occurred in the absence of the SE (B6 mice); however, they developed earlier in DR4tg SE-expressing mice
    corecore