30 research outputs found
1-(4-Fluorophenyl)biguanid-1-ium chloride
The title compound, C8H11FN5 +·Cl-, crystallized with a monoprotonated 1-(4-fluorophenyl)biguanidinium cation and a chloride anion in the asymmetric unit. The biguanidium group is not planar [dihedral angle between the two CN3 groups = 52.0 (1)°] and is rotated with respect to the phenyl group [tau = 54.3 (3)°]. In the crystal, N—H ... N hydrogen-bonded centrosymmetric dimers are connected into ribbons, which are further stabilized by N—H ... Cl interactions, forming a three-dimensional hydrogen-bonded network
1-(4-Fluorophenyl)biguanid-1-ium chloride
The title compound, C8H11FN5
+·Cl−, crystallized with a monoprotonated 1-(4-fluorophenyl)biguanidinium cation and a chloride anion in the asymmetric unit. The biguanidium group is not planar [dihedral angle between the two CN3 groups = 52.0 (1)°] and is rotated with respect to the phenyl group [τ = 54.3 (3)°]. In the crystal, N—H⋯N hydrogen-bonded centrosymmetric dimers are connected into ribbons, which are further stabilized by N—H⋯Cl interactions, forming a three-dimensional hydrogen-bonded network
2-Amino-1-methyl-1H-imidazol-4(5H)-one dimethyl sulfoxide monosolvate
In the title compound, C4H7N3O·C2H6OS, creatinine [2-amino-1-methyl-1H-imidazol-4(5H)one] exists in the amine form. The ring is planar (r.m.s. deviation for all non-H atoms = 0.017 Å). In the crystal, two creatinine molecules form centrosymmetric hydrogen-bonded dimers linked by pairs of N—H⋯N hydrogen bonds. In addition, creatinine is linked to a dimethyl sulfoxide molecule by an N—H⋯O interaction. The packing shows layers parallel to (120)
Co-Kristalle als Modellsysteme für die Untersuchung von Wirkstoff-Rezeptor-Wechselwirkungen
Diese Arbeit beschäftigt sich mit den Strukturen supramolekularer Komplexe, die aus einem Wirkstoff und einem Modellrezeptor bestehen. Um die spezifische Bindung durch H-Brückenbildung nachzuahmen, wurden Co-Kristallkomponenten ausgesucht, die komplementäre Bindungsstellen besitzen. Die Strukturen der erhaltenen Komplexe sowie einiger (pseudo)polymorpher Formen wurden mit Hilfe der Einkristallstrukturanalyse bestimmt. Ein Vergleich mit Kristallstrukturen ähnlicher Verbindungen ergab Hinweise auf die bevorzugten Konformationen sowie die am häufigsten gebildeten H-Brückenmotive. Theoretische Berechnungen mit den Programmen MOMO und GAUSSIAN wurden bei der Einstufung der Stabilität der Konformere und Tautomere sowie bei der Abschätzung der Komplexbildungsenergien eingesetzt.
Zunächst wurden Co-Kristalle synthetisiert, deren Komponenten ausschließlich fixierte H-Brücken-bindungsstellen besitzen. Die Co-Kristallisationsversuche des Antimalariamittels Pyrimethamin mit Orotsäure führten zur Bildung einer neuen polymorphen Form, zwei Solvaten sowie dem gewünschten Co-Kristall.
In dem ADA/DAD-Komplex zwischen dem Antibiotikum Nitrofurantoin und 2,6-Diacetamidopyridin werden die Co-Kristallkomponenten durch drei H-Brücken verbunden. In den Kristallstrukturen wird die energetisch ungünstigere sp-Konformation von Nitrofurantoin bevorzugt. In dieser Konfomation besitzt das Molekül eine positive und eine negative Seite; dies ermöglicht eine dichtere Kristallpackung.
Aufgrund der Elektronegativitäten der O- und S-Atome sollte das Watson-Crick-Basenpaar zwischen den Nucleosiden 2-Thiouridin und Adenin, das durch eine N-H•••O-Brücke verbunden ist, stabiler sein als das entsprechende Wobble-Basenpaar mit einer N-H•••S-Brücke. Um die Stabilitäten der beiden H-Brücken zu untersuchen, wurden Co-Kristallisationsversuche mit dem Thyreostatikum 6-Propyl-2-thiouracil durchgeführt. Im Co-Kristall mit 2-Aminopyrimidin wird das R_2^2(8)-Heterodimer durch eine N-H•••N- und eine N-H•••S-Brücke verbunden, während N-H•••O-Brücken die 6-Propyl-2-thiouracilmoleküle zu Ketten verknüpfen. Aufgrund der ungünstigen intramolekularen Donor/Akzeptor-Abstände wird im Co-Kristall mit 2,6-Diacetamidopyridin der gewünschte ADA/DAD-Komplex nicht beobachtet. Stattdessen bildet 6-Propyl-2-thiouracil mit Hilfe zweier N-H•••S-Brücken R_2^2(8)-Homodimere, mit denen 2,6-Diacetamidopyridin nur durch eine N-H•••O-Brücke verbunden ist. Die Mitwirkung der N-H•••S-Brücke bei der „Basenpaarung“ kann dadurch erklärt werden, dass bei der Beteiligung der N-H•••O-Brücken an dem R_2^2(8)-Motiv N-H•••S-Brücken für die Kettenbildung zuständig wären; dieses Strukturmotiv wird jedoch in Kristallstrukturen selten beobachtet. Insgesamt zeigen diese Untersuchungen, dass C-O- und C-S-Gruppen konkurrenzfähige H-Brückenakzeptoren sind.
Anschließend wurden mehrere Co-Kristalle des Antimykotikums 5-Fluorcytosin synthetisiert. Im Co-Kristall mit 2-Aminopyrimidin wird das gewünschte AD/DA-Heterodimer beobachtet. Ein ähnliches R_2^2(8)-Heterodimer könnte zwischen 5-Fluorcytosin und N-Acetylkreatinin gebildet werden, jedoch werden die Komponenten lediglich durch eine H-Brücke miteinander verknüpft. Energieberechnungen machen dies plausibel. Trotz der komplementären AAD/DDA-Bindungsstellen wird im Co-Kristall mit 6-Aminouracil das Heterodimer nur durch zwei H-Brücken verbunden. Die dadurch gewonnene Energie reicht offenbar aus, um den Energieunterschied zum AAD/DDA-Heterodimer zu kompensieren. Die Co-Kristalle des 5-Fluorcytosins mit 6-Aminoisocytosin sowie der Co-Kristall mit dem antiviralen Wirkstoff Aciclovir bestätigen die Stabilität des AAD/DDA-H-Brückenmusters, welches dem Watson-Crick-Basenpaar C-G ähnelt.
Es gelang auch, das Konformations- und das Tautomerengleichgewicht durch eine spezifische Bindung zu beeinflussen. In den Co-Kristallen von 5-Fluorcytosin mit den beiden konformationell flexiblen Molekülen Biuret und 6-Acetamidouracil wird nur diejenige Konformation gefunden, die zur Bildung des gewünschten AAD/DDA-Heterodimers führt. Dabei liegt Biuret in der energetisch günstigeren trans-Form, 6-Acetamidouracil jedoch in der ungünstigeren cis-Form vor. Die drei AAD/DDA-Komplexe von 6-Methylisocytosin zeigen, dass durch die Bildung komplementärer H-Brückeninteraktionen Tautomere getrennt kristallisiert werden können: in den Co-Kristallen mit 5-Fluorcytosin findet man ausschließlich die 3H-Form, während in dem Komplex mit 6-Aminoisocytosin lediglich die 1H-Form vorliegt.
In dieser Studie werden somit neue Einblicke in die Anwendung von Co-Kristallen als Modellsysteme für die Untersuchung von Wirkstoff/Rezeptor-Wechselwirkungen gewonnen. Um Wirkstoff/Rezeptor-Komplexe noch besser nachzuahmen, sollten zukünftig Co-Kristallisationsversuche mit größeren und flexibleren Modellrezeptoren vorgenommen werden. Weiterhin wäre die Berücksichtigung schwacher Wechselwirkungen bei der Synthese von Co-Kristallen von Interesse
Nitrofurantoin methanol monosolvate
The antibiotic nitrofurantoin {systematic name: (E)-1-[(5-nitro-2-furyl)methylideneamino]imidazolidine-2,4-dione} crystallizes as a methanol monosolvate, C8H6N4O5·CH4O. The nitrofurantoin molecule adopts a nearly planar conformation (r.m.s. deviation = 0.0344 Å). Hydrogen bonds involve the co-operative N—H⋯O—H⋯O heterosynthons between the cyclic imide of nitrofurantoin and methanol O—H groups. There are also C—H⋯O hydrogen bonds involving the nitrofurantoin molecules which support the key hydrogen-bonding synthon. The overall crystal packing is further assisted by weak C—H⋯O interactions, giving a herringbone pattern
4-Chloro-N-[N-(6-methyl-2-pyridyl)carbamothioyl]benzamide
In the title compound, C14H12ClN3OS, the short exocyclic N—C bond lengths indicate resonance in the thiourea part of the molecule. The title compound is stabilized by an intramolecular N—H⋯N hydrogen bond, which results in the formation of a six-membered ring. In addition, it shows a synperiplanar conformation between the thiocarbonyl group and the pyridine group. Intermolecular N—H⋯S and C—H⋯O interactions are also present
Controlling molecular tautomerism through supramolecular selectivity
We have isolated the stable as well as the metastable tautomers of 1-deazapurine in the solid state by exploiting principles of supramolecular selectivity in the context of cocrystal design
Polymorphism: an evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria
Polymorphism in solids is a common phenomenon in drugs, which can lead to compromised quality due to changes in their physicochemical properties, particularly solubility, and, therefore, reduce bioavailability. Herein, a bibliographic survey was performed based on key issues and studies related to polymorphism in active pharmaceutical ingredient (APIs) present in medications from the Farmácia Popular Rede Própria. Polymorphism must be controlled to prevent possible ineffective therapy and/or improper dosage. Few mandatory tests for the identification and control of polymorphism in medications are currently available, which can result in serious public health concerns