6 research outputs found

    The expectations and realities of nutrigenomic testing in australia: A qualitative study.

    Get PDF
    BACKGROUND: Consumer genomic testing for nutrition and wellness, (nutritional genomics), is becoming increasingly popular. Concurrently, health-care practitioners (HPs) working in private practice (including doctors interested in integrative medicine, private genetic counsellors, pharmacists, dieticians, naturopaths and nutritionists) are involved as test facilitators or interpreters. OBJECTIVE: To explore Australian consumers' and HPs' experiences with nutrigenomic testing. METHOD: Semi-structured in-depth interviews were conducted using predominantly purposive sampling. The two data sets were analysed individually, then combined, using a constant comparative, thematic approach. RESULTS: Overall, 45 interviews were conducted with consumers (n = 18) and HPs (n = 27). Many of the consumer interviewees experienced chronic ill-health. Nutrigenomic testing was perceived as empowering and a source of hope for answers. While most made changes to their diet/supplements post-test, self-reported health improvements were small. A positive relationship with their HP appeared to minimize disappointment. HPs' adoption and views of nutrigenomic testing varied. Those enthusiastic about testing saw the possibilities it could offer. However, many felt nutrigenomic testing was not the only 'tool' to utilize when offering health care. DISCUSSION: This research highlights the important role HPs play in consumers' experiences of nutrigenomics. The varied practice suggests relevant HPs require upskilling in this area to at least support their patients/clients, even if nutrigenomic testing is not part of their practice. PATIENT OR PUBLIC CONTRIBUTION: Advisory group included patient/public group representatives who informed study design; focus group participants gave feedback on the survey from which consumer interviewees were sourced. This informed the HP data set design. Interviewees from HP data set assisted with snowball sampling

    The Clinical and Psychosocial Outcomes for Women Who Received Unexpected Clinically Actionable Germline Information Identified through Research: An Exploratory Sequential Mixed-Methods Comparative Study

    No full text
    Background Research identifying and returning clinically actionable germline variants offer a new avenue of access to genetic information. The psychosocial and clinical outcomes for women who have received this ‘genome-first care’ delivering hereditary breast and ovarian cancer risk information outside of clinical genetics services are unknown. Methods: An exploratory sequential mixed-methods case-control study compared outcomes between women who did (cases; group 1) and did not (controls; group 2) receive clinically actionable genetic information from a research cohort in Victoria, Australia. Participants completed an online survey examining cancer risk perception and worry, and group 1 also completed distress and adaptation measures. Group 1 participants subsequently completed a semi structured interview. Results: Forty-five participants (group 1) and 96 (group 2) completed the online survey, and 31 group 1 participants were interviewed. There were no demographic differences between groups 1 and 2, although more of group 1 participants had children (p = 0.03). Group 1 reported significantly higher breast cancer risk perception (p < 0.001) compared to group 2, and higher cancer worry than group 2 (p < 0.001). Some group 1 participants described how receiving their genetic information heightened their cancer risk perception and exacerbated their cancer worry while waiting for risk-reducing surgery. Group 1 participants reported a MICRA mean score of 27.4 (SD 11.8, range 9–56; possible range 0–95), and an adaptation score of 2.9 (SD = 1.1). Conclusion: There were no adverse psychological outcomes amongst women who received clinically actionable germline information through a model of ‘genome-first’ care compared to those who did not. These findings support the return of clinically actionable research results to research participants

    The Australian Reproductive Genetic Carrier Screening Project (Mackenzie’s Mission): Design and Implementation

    No full text
    Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie’s Mission—the Australian Reproductive Genetic Carrier Screening Project. Mackenzie’s Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with >750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program

    TRACEBACK: Testing of Historical Tubo-Ovarian Cancer Patients for Hereditary Risk Genes as a Cancer Prevention Strategy in Family Members

    No full text
    PURPOSE: Tubo-ovarian cancer (TOC) is a sentinel cancer for BRCA1 and BRCA2 pathogenic variants (PVs). Identification of a PV in the first member of a family at increased genetic risk (the proband) provides opportunities for cancer prevention in other at-risk family members. Although Australian testing rates are now high, PVs in patients with TOC whose diagnosis predated revised testing guidelines might have been missed. We assessed the feasibility of detecting PVs in this population to enable genetic risk reduction in relatives. PATIENTS AND METHODS: In this pilot study, deceased probands were ascertained from research cohort studies, identification by a relative, and gynecologic oncology clinics. DNA was extracted from archival tissue or stored blood for panel sequencing of 10 risk-associated genes. Testing of deceased probands ascertained through clinic records was performed with a consent waiver. RESULTS: We identified 85 PVs in 84 of 787 (11%) probands. Familial contacts of 39 of 60 (65%) deceased probands with an identified recipient (60 of 84; 71%) have received a written notification of results, with follow-up verbal contact made in 85% (33 of 39). A minority of families (n = 4) were already aware of the PV. For many (29 of 33; 88%), the genetic result provided new information and referral to a genetic service was accepted in most cases (66%; 19 of 29). Those who declined referral (4 of 29) were all male next of kin whose family member had died more than 10 years before. CONCLUSION: We overcame ethical and logistic challenges to demonstrate that retrospective genetic testing to identify PVs in previously untested deceased probands with TOC is feasible. Understanding reasons for a family member's decision to accept or decline a referral will be important for guiding future TRACEBACK projects.</p
    corecore