711 research outputs found
Direct Detection of the Brown Dwarf GJ 802B with Adaptive Optics Masking Interferometry
We have used the Palomar 200" Adaptive Optics (AO) system to directly detect
the astrometric brown dwarf GJ 802B reported by Pravdo et al. 2005. This
observation is achieved with a novel combination of aperture masking
interferometry and AO. The dynamical masses are 0.1750.021 M and
0.0640.032 M for the primary and secondary respectively. The
inferred absolute H band magnitude of GJ 802B is M=12.8 resulting in a
model-dependent T of 1850 50K and mass range of
0.057--0.074 M.Comment: 4 Pages, 5 figures, emulateapj format, submitted to ApJ
Near-IR imaging of T Cha: evidence for scattered-light disk structures at solar system scales
T Chamaeleontis is a young star surrounded by a transitional disk, and a
plausible candidate for ongoing planet formation. Recently, a substellar
companion candidate was reported within the disk gap of this star. However, its
existence remains controversial, with the counter-hypothesis that light from a
high inclination disk may also be consistent with the observed data. The aim of
this work is to investigate the origin of the observed closure phase signal to
determine if it is best explained by a compact companion. We observed T Cha in
the L and K s filters with sparse aperture masking, with 7 datasets covering a
period of 3 years. A consistent closure phase signal is recovered in all L and
K s datasets. Data were fit with a companion model and an inclined
circumstellar disk model based on known disk parameters: both were shown to
provide an adequate fit. However, the absence of expected relative motion for
an orbiting body over the 3-year time baseline spanned by the observations
rules out the companion model. Applying image reconstruction techniques to each
dataset reveals a stationary structure consistent with forward scattering from
the near edge of an inclined disk.Comment: 6 pages, 3 figures, accepted for publication in MNRAS Letter
High Angular Resolution Stellar Imaging with Occultations from the Cassini Spacecraft II: Kronocyclic Tomography
We present an advance in the use of Cassini observations of stellar
occultations by the rings of Saturn for stellar studies. Stewart et al. (2013)
demonstrated the potential use of such observations for measuring stellar
angular diameters. Here, we use these same observations, and tomographic
imaging reconstruction techniques, to produce two dimensional images of complex
stellar systems. We detail the determination of the basic observational
reference frame. A technique for recovering model-independent brightness
profiles for data from each occulting edge is discussed, along with the
tomographic combination of these profiles to build an image of the source star.
Finally we demonstrate the technique with recovered images of the {\alpha}
Centauri binary system and the circumstellar environment of the evolved
late-type giant star, Mira.Comment: 8 pages, 8 figures, Accepted by MNRA
- …