25 research outputs found

    Performance and enhancement for HD videoconference environment

    Get PDF
    In this work proposed here is framed in the project of research V3 (Video, Videoconference, and Visualization) of the Foundation i2CAT, that has for final goal to design and development of a platform of video, videoconference and independent visualization of resolution in high and super though inside new generation IP networks. i2CAT Foundation uses free software for achieving its goals. UltraGrid for the transmission of HD video is used and SAGE is used for distributed visualization among multiple monitors. The equipment used for management (capturing, sending, visualization, etc) of the high definition stream of work environment it has to be optimized so that all the disposable resources can be used, in order to improve the quality and stability of the platform. We are speaking about the treatment of datum flows of more of 1 Gbps with raw formats, so that the optimization of the use of the disposable resources of a system is given back a need. In this project it is evaluated the requirements for the high definition streams without compressing and a study of the current platform is carried out, in order to extract the functional requirements that an optimum system has to have to work in the best conditions. From this extracted information, a series of systems tests are carried out in order to improve the performance, from level of network until level of application. Different distributions of the Linux operating system have been proved in order to evaluate their performance. These are Debian 4 and openSUSE 10.3. The creation of a system from sources of software has also been proved in order to optimize its code in the compilation. It has been carried out with the help of Linux From Scratch project. It has also been tried to use systems Real Time (RT) with the distributions used. It offers more stability in the stream frame rate. Once operating systems has been test, it has proved different compilers in order to evaluate their efficiency. The GCC and the Intel C++ Compilers have proved, this second with more satisfactory results. Finally a Live CD has been carried out in order to include all the possible improvements in a system of easy distribution

    Open source traffic analyzer

    Get PDF
    Proper traffic analysis is crucial for the development of network systems, services and protocols. Traffic analysis equipment is often based on costly dedicated hardware, and uses proprietary software for traffic generation and analysis. The recent advances in open source packet processing, with the potential of generating and receiving packets using a regular Linux computer at 10 Gb/s speed, opens up very interesting possibilities in terms of implementing a traffic analysis system based on open-source Linux. The pktgen software package for Linux is a popular tool in the networking community for generating traffic loads for network experiments. Pktgen is a high-speed packet generator, running in the Linux kernel very close to the hardware, thereby making it possible to generate packets with very little processing overhead. The packet generation can be controlled through a user interface with respect to packet size, IP and MAC addresses, port numbers, inter-packet delay, and so on. Pktgen was originally designed with the main goal of generating packets at very high rate. However, when it comes to support for traffic analysis, pktgen has several limitations. One of the most important characteristics of a packet generator is the ability to generate traffic at a specified rate. Pktgen can only do this indirectly, by inserting delays between packets. Moreover, the timer granularity prevents precise control of the transmission rate, something which severely reduces pktgen's usefulness as an analysis tool. Furthermore, pktgen lacks support for receiveside analysis and statistics generation. This is a key issue in order to convert pktgen into a useful network analyser tool. In this paper, improvements to pktgen are proposed, designed, implemented and evaluated, with the goal of evolving pktgen into a complete and efficient network analysis tool. The rate control is significantly improved, increasing the resolution and improving the usability by making it possible to specify exactly the sending rate. A receive-side tool is designed and implemented with support for measurement of number of packets, throughput, inter-arrival time, jitter and latency. The design of the receiver takes advantage of SMP systems and new features on modern network cards, in particular support for multiple receive queues and CPU scheduling. This makes it possible to use multiple CPUs to parallelize the work, improving the overall capacity of the traffic analyser. A significant part of the work has been spent on investigating low-level details of Linux networking. From this work we draw some general conclusions related to high speed packet processing in SMP systems. In particular, we study how the packet processing capacity per CPU depends on the number of CPUs. This work consists of minimal set of kernel patches to pktgen

    Performance and enhancement for HD videoconference environment

    Get PDF
    In this work proposed here is framed in the project of research V3 (Video, Videoconference, and Visualization) of the Foundation i2CAT, that has for final goal to design and development of a platform of video, videoconference and independent visualization of resolution in high and super though inside new generation IP networks. i2CAT Foundation uses free software for achieving its goals. UltraGrid for the transmission of HD video is used and SAGE is used for distributed visualization among multiple monitors. The equipment used for management (capturing, sending, visualization, etc) of the high definition stream of work environment it has to be optimized so that all the disposable resources can be used, in order to improve the quality and stability of the platform. We are speaking about the treatment of datum flows of more of 1 Gbps with raw formats, so that the optimization of the use of the disposable resources of a system is given back a need. In this project it is evaluated the requirements for the high definition streams without compressing and a study of the current platform is carried out, in order to extract the functional requirements that an optimum system has to have to work in the best conditions. From this extracted information, a series of systems tests are carried out in order to improve the performance, from level of network until level of application. Different distributions of the Linux operating system have been proved in order to evaluate their performance. These are Debian 4 and openSUSE 10.3. The creation of a system from sources of software has also been proved in order to optimize its code in the compilation. It has been carried out with the help of Linux From Scratch project. It has also been tried to use systems Real Time (RT) with the distributions used. It offers more stability in the stream frame rate. Once operating systems has been test, it has proved different compilers in order to evaluate their efficiency. The GCC and the Intel C++ Compilers have proved, this second with more satisfactory results. Finally a Live CD has been carried out in order to include all the possible improvements in a system of easy distribution

    Projecte campus multimodal: pilotatge del suport de veu en lectura. Memòria final

    Get PDF
    El projecte va ser acceptat a la convocatòria PID 2011-2012Memòria final del projecte d'innovació docent "Campus multimodal" en el què es va experimentar amb dues eines de suport de veu en la lectura en una assignatura de Tècniques de Treball en diverses carreres associades amb Dret. Les eines van ser ClaroRead, un programari de PC que llegeix en veu alta tot el contingut de l'ordinador ressaltant la paraula llegida i amb altres utilitats de resum i creació de mapes conceptuals; i ReadSpeaker, una eina instal.lada al campus virtual que llegeix en veu alta el contingut web i contingut dels fitxers PDF. S'explica l'experiència i els resultats. Es conclou amb la necessitat de facilitar eines de suport a la lectura per als alumnes amb necessitats especials.ReadSpeaker, Integrate

    Advances in Cardiovascular Disease Lipid Research Can Provide Novel Insights Into Mycobacterial Pathogenesis

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in industrialized nations and an emerging health problem in the developing world. Systemic inflammatory processes associated with alterations in lipid metabolism are a major contributing factor that mediates the development of CVDs, especially atherosclerosis. Therefore, the pathways promoting alterations in lipid metabolism and the interplay between varying cellular types, signaling agents, and effector molecules have been well-studied. Mycobacterial species are the causative agents of various infectious diseases in both humans and animals. Modulation of host lipid metabolism by mycobacteria plays a prominent role in its survival strategy within the host as well as in disease pathogenesis. However, there are still several knowledge gaps in the mechanistic understanding of how mycobacteria can alter host lipid metabolism. Considering the in-depth research available in the area of cardiovascular research, this review presents an overview of the parallel areas of research in host lipid-mediated immunological changes that might be extrapolated and explored to understand the underlying basis of mycobacterial pathogenesis

    Network virtualization as enabler for cloud networking

    No full text
    The Internet has exponentially grown and now it is part of our everyday life. Internet services and applications rely on back-end servers that are deployed on local servers and data centers. With the growing use of data centers and cloud computing, the locations of these servers have been externalized and centralized, taking advantage of economies of scale. However, some applications need to define complex network topologies and require more than simple connectivity to the remote sites. Therefore, the network part of cloud computing, what is called cloud networking, needs to be improved and simplified. This thesis argues that network virtualization permits to fill the missing gap and we propose a network virtualization abstraction layer to ease the use of cloud networking for the end users. We implement a software prototype of our ideas using OpenFlow. We also evaluate our prototype with state of the art controllers that has similar functionalities for network virtualization. A second part of this thesis focuses on developing a tool for performance testing. We have improved the widely used tool pktgen with receiver functionalities. We use pktgen to generate traffic for our experiments with network virtualization.QC 20160428</p

    Network virtualization as enabler for cloud networking

    No full text
    The Internet has exponentially grown and now it is part of our everyday life. Internet services and applications rely on back-end servers that are deployed on local servers and data centers. With the growing use of data centers and cloud computing, the locations of these servers have been externalized and centralized, taking advantage of economies of scale. However, some applications need to define complex network topologies and require more than simple connectivity to the remote sites. Therefore, the network part of cloud computing, what is called cloud networking, needs to be improved and simplified. This thesis argues that network virtualization permits to fill the missing gap and we propose a network virtualization abstraction layer to ease the use of cloud networking for the end users. We implement a software prototype of our ideas using OpenFlow. We also evaluate our prototype with state of the art controllers that has similar functionalities for network virtualization. A second part of this thesis focuses on developing a tool for performance testing. We have improved the widely used tool pktgen with receiver functionalities. We use pktgen to generate traffic for our experiments with network virtualization.QC 20160428</p

    Open Source Traffic Analyzer

    No full text
    Proper traffic analysis is crucial for the development of network systems, services and protocols. Traffic analysis equipment is often based on costly dedicated hardware, and uses proprietary software for traffic generation and analysis. The recent advances in open source packet processing, with the potential of generating and receiving packets using a regular Linux computer at 10 Gb/s speed, opens up very interesting possibilities in terms of implementing a traffic analysis system based on open-source Linux. The pktgen software package for Linux is a popular tool in the networking community for generating traffic loads for network experiments. Pktgen is a high-speed packet generator, running in the Linux kernel very close to the hardware, thereby making it possible to generate packets with very little processing overhead. The packet generation can be controlled through a user interface with respect to packet size, IP and MAC addresses, port numbers, inter-packet delay, and so on. Pktgen was originally designed with the main goal of generating packets at very high rate. However, when it comes to support for traffic analysis, pktgen has several limitations. One of the most important characteristics of a packet generator is the ability to generate traffic at a specified rate. Pktgen can only do this indirectly, by inserting delays between packets. Moreover, the timer granularity prevents precise control of the transmission rate, something which severely reduces pktgen’s usefulness as an analysis tool. Furthermore, pktgen lacks support for receives ide analysis and statistics generation. This is a key issue in order to convert pktgen into a useful network analyser tool. In this paper, improvements to pktgen are proposed, designed, implemented and evaluated, with the goal of evolving pktgen into a complete and efficient network analysis tool. The rate control is significantly improved, increasing the resolution and improving the usability by making it possible to specify exactly the sending rate. A receive-side tool is designed and implemented with support for measurement of number of packets, throughput, inter-arrival time, jitter and latency. The design of the receiver takes advantage of SMP systems and new features on modern network cards, in particular support for multiple receive queues and CPU scheduling. This makes it possible to use multiple CPUs to parallelize the work, improving the overall capacity of the traffic analyser. A significant part of the work has been spent on investigating low-level details of Linux networking. From this work we draw some general conclusions related to high speed packet processing in SMP systems. In particular, we study how the packet processing capacity per CPUdepends on the number of CPUs. This work consists of minimal set of kernel patches to pktgen

    Performance and enhancement for HD videoconference environment

    No full text
    In this work proposed here is framed in the project of research V3 (Video, Videoconference, and Visualization) of the Foundation i2CAT, that has for final goal to design and development of a platform of video, videoconference and independent visualization of resolution in high and super though inside new generation IP networks. i2CAT Foundation uses free software for achieving its goals. UltraGrid for the transmission of HD video is used and SAGE is used for distributed visualization among multiple monitors. The equipment used for management (capturing, sending, visualization, etc) of the high definition stream of work environment it has to be optimized so that all the disposable resources can be used, in order to improve the quality and stability of the platform. We are speaking about the treatment of datum flows of more of 1 Gbps with raw formats, so that the optimization of the use of the disposable resources of a system is given back a need. In this project it is evaluated the requirements for the high definition streams without compressing and a study of the current platform is carried out, in order to extract the functional requirements that an optimum system has to have to work in the best conditions. From this extracted information, a series of systems tests are carried out in order to improve the performance, from level of network until level of application. Different distributions of the Linux operating system have been proved in order to evaluate their performance. These are Debian 4 and openSUSE 10.3. The creation of a system from sources of software has also been proved in order to optimize its code in the compilation. It has been carried out with the help of Linux From Scratch project. It has also been tried to use systems Real Time (RT) with the distributions used. It offers more stability in the stream frame rate. Once operating systems has been test, it has proved different compilers in order to evaluate their efficiency. The GCC and the Intel C++ Compilers have proved, this second with more satisfactory results. Finally a Live CD has been carried out in order to include all the possible improvements in a system of easy distribution
    corecore