137 research outputs found
EORTC Group Phase II Study of Oral Etoposide for Pretreated Soft Tissue Sarcoma
Purpose. This study investigates the efficacy and toxicity of daily oral etoposide in
chemotherapy for non-heavily pretreated advanced and metastatic soft tissue sarcoma (STS)
High-dose epirubicin is not an alternative to standard-dose doxorubicin in the treatment of advanced soft tissue sarcomas. A study of the EORTC soft tissue and bone sarcoma group.
The activity and toxicity of single-agent standard-dose doxorubicin were compared with that of two schedules of high-dose epirubicin. A total of 334 chemonaive patients with histologically confirmed advanced soft-tissue sarcomas received (A) doxorubicin 75 mg m(-2) on day 1 (112 patients), (B) epirubicin 150 mg m(-2) on day 1 (111 patients) or (C) epirubicin 50 mg m(-2) day(-1) on days 1, 2 and 3 (111 patients); all given as bolus injection at 3-week intervals. A median of four treatment cycles was given. Median age was 52 years (19-70 years) and performance score 1 (0-2). Of 314 evaluable patients, 45 (14%) had an objective tumour response (eight complete response, 35 partial response). There were no differences among the three groups. Median time to progression for groups A, B and C was 16, 14 and 12 weeks, and median survival 45, 47 and 45 weeks respectively. Neither progression-free (P = 0.93) nor overall survival (P = 0.89) differed among the three groups. After the first cycle of therapy, two patients died of infection and one owing to cardiovascular disease, all on epirubicin. Both dose schedules of epirubicin were more myelotoxic than doxorubicin. Cardiotoxicity (> or = grade 3) occurred in 1%, 0% and 2% respectively. Regardless of the schedule, high-dose epirubicin is not a preferred alternative to standard-dose doxorubicin in the treatment of patients with advanced soft-tissue sarcomas
p53 status correlates with histopathological response in patients with soft tissue sarcomas treated using isolated limb perfusion with TNF-α and melphalan
Background: Recombinant tumor necrosis factor-α (TNF-α) combined to melphalan is clinically administered through isolated limb perfusion (ILP) for regionally advanced soft tissue sarcomas of the limbs. In preclinical studies, wild-type p53 gene is involved in the regulation of cytotoxic action of TNF-α and loss of p53 function contributes to the resistance of tumour cells to TNF-α. The relationship between p53 status and response to TNF-α and melphalan in patients undergoing ILP is unknown. Patients and methods: We studied 110 cases of unresectable limbs sarcomas treated by ILP. Immunohistochemistry was carried out using DO7mAb, which reacts with an antigenic determinant from the N-terminal region of both the wild-type and mutant forms of the p53 protein, and PAb1620mAb, which reacts with the 1620 epitope characteristic of the wild-type native conformation of the p53 protein. The immunohistochemistry data were then correlated with various clinical parameters. Results: P53DO7 was found expressed at high levels in 28 patients, whereas PAb1620 was negative in 20. The tumours with poor histological response to ILP with TNF-α and melphalan showed significantly higher levels of p53-mutated protein. Conclusions: Our results might be a clue to a role of p53 protein status in TNF-α and melphalan response in clinical us
Excellent translational research in oncology : A journey towards novel and more effective anti-cancer therapies
Comprehensive Cancer Centres (CCCs) serve as critical drivers for improving cancer survival. In Europe, we have developed an Excellence Designation System (EDS) consisting of criteria to assess "excellence" of CCCs in translational research (bench to bedside and back), with the expectation that many European CCCs will aspire to this status. (C) 2015 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies.Peer reviewe
Integrating precision cancer medicine into healthcare—policy, practice, and research challenges
Abstract Precision medicine (PM) can be defined as a predictive, preventive, personalized, and participatory healthcare service delivery model. Recent developments in molecular biology and information technology make PM a reality today through the use of massive amounts of genetic, ‘omics’, clinical, environmental, and lifestyle data. With cancer being one of the most prominent public health threats in developed countries, both the research community and governments have been investing significant time, money, and efforts in precision cancer medicine (PCM). Although PCM research is extremely promising, a number of hurdles still remain on the road to an optimal integration of standardized and evidence-based use of PCM in healthcare systems. Indeed, PCM raises a number of technical, organizational, ethical, legal, social, and economic challenges that have to be taken into account in the development of an appropriate health policy framework. Here, we highlight some of the more salient issues regarding the standards needed for integration of PCM into healthcare systems, and we identify fields where more research is needed before policy can be implemented. Key challenges include, but are not limited to, the creation of new standards for the collection, analysis, and sharing of samples and data from cancer patients, and the creation of new clinical trial designs with renewed endpoints. We believe that these issues need to be addressed as a matter of priority by public health policymakers in the coming years for a better integration of PCM into healthcare
- …