163 research outputs found
Sources Of Student Engagement In Introductory Physics For Life Sciences
We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students’ other coursework in biology and chemistry, and examples that make connections to what students perceive to be the “real world,” are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various “engagement pathways” by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways
Teaching and understanding of quantum interpretations in modern physics courses
Just as expert physicists vary in their personal stances on interpretation in
quantum mechanics, instructors vary on whether and how to teach interpretations
of quantum phenomena in introductory modern physics courses. In this paper, we
document variations in instructional approaches with respect to interpretation
in two similar modern physics courses recently taught at the University of
Colorado, and examine associated impacts on student perspectives regarding
quantum physics. We find students are more likely to prefer realist
interpretations of quantum-mechanical systems when instructors are less
explicit in addressing student ontologies. We also observe contextual
variations in student beliefs about quantum systems, indicating that
instructors who choose to address questions of ontology in quantum mechanics
should do so explicitly across a range of topics.Comment: 18 pages, references, plus 2 pages supplemental materials. 8 figures.
PACS: 01.40.Fk, 03.65.-
Sustaining Educational Reforms in Introductory Physics
While it is well known which curricular practices can improve student
performance on measures of conceptual understanding, the sustaining of these
practices and the role of faculty members in implementing these practices are
less well understood. We present a study of the hand-off of Tutorials in
Introductory Physics from initial adopters to other instructors at the
University of Colorado, including traditional faculty not involved in physics
education research. The study examines the impact of implementation of
Tutorials on student conceptual learning across eight first-semester, and seven
second-semester courses, for fifteen faculty over twelve semesters, and
includes roughly 4000 students. It is possible to demonstrate consistently
high, and statistically indistinguishable, student learning gains for different
faculty members; however, such results are not the norm, and appear to rely on
a variety of factors. Student performance varies by faculty background -
faculty involved in, or informed by physics education research, consistently
post higher student learning gains than less-informed faculty. Student
performance in these courses also varies by curricula used - all semesters in
which the research-based Tutorials and Learning Assistants are used have higher
student learning gains than those semesters that rely on non-research based
materials and do not employ Learning Assistants.Comment: 21 pages, 4 figures, and other essential inf
Bridging The Gaps: How Students Seek Disciplinary Coherence In Introductory Physics For Life Science
Students in one discipline often receive their scientific training from faculty in other disciplines. As a result of tacit disciplinary differences, especially as implemented in courses at the introductory college level, such students can have difficulty in understanding the nature of the knowledge they are learning in a discipline that they do not identify as their own. We developed a course in introductory physics for life science (IPLS) students that attempts to help them cross disciplinary boundaries. By analyzing student reasoning during recitation sections and interviews, we identified three broad ways in which students in our course meaningfully crossed boundaries: (i) by unpacking biochemical heuristics in terms of underlying physical interactions, (ii) by locating both biochemical and physical concepts within a mathematical bridging expression, and (iii) by coordinating functional and mechanistic explanations for the same biological phenomenon. Drawing on episodes from case-study interviews and in-class problem-solving sessions, we illustrate how each of these types of boundary crossing involves the coordination of students’ conceptual and epistemological resources from physics, chemistry, and biology in distinct but complementary ways. Together, these boundary crossing categories form a theoretical framework for classifying student coherence seeking. We explore how the IPLS course helps our life science students fill in the gaps that exist between traditional introductory courses, by finding and exploring questions that might otherwise fall through disciplinary cracks. By identifying these types of explanatory coherence, we hope to suggest ways of inviting life science students to participate in physics and see physics as a tool for making sense of the living world
Use of RIP to inactivate genes in Neurospora crassa.
About two years ago we suggested that a novel genetic mechanism, operating in the period between fertilization and nuclear fusion in Neurospora, scans the genome for sequence dupliations and alters them (Selker E. et al. 1987 Cell 51:741-752)
NEXUS/Physics: An interdisciplinary repurposing of physics for biologists
In response to increasing calls for the reform of the undergraduate science
curriculum for life science majors and pre-medical students (Bio2010,
Scientific Foundations for Future Physicians, Vision & Change), an
interdisciplinary team has created NEXUS/Physics: a repurposing of an
introductory physics curriculum for the life sciences. The curriculum interacts
strongly and supportively with introductory biology and chemistry courses taken
by life sciences students, with the goal of helping students build general,
multi-discipline scientific competencies. In order to do this, our two-semester
NEXUS/Physics course sequence is positioned as a second year course so students
will have had some exposure to basic concepts in biology and chemistry.
NEXUS/Physics stresses interdisciplinary examples and the content differs
markedly from traditional introductory physics to facilitate this. It extends
the discussion of energy to include interatomic potentials and chemical
reactions, the discussion of thermodynamics to include enthalpy and Gibbs free
energy, and includes a serious discussion of random vs. coherent motion
including diffusion. The development of instructional materials is coordinated
with careful education research. Both the new content and the results of the
research are described in a series of papers for which this paper serves as an
overview and context.Comment: 12 page
The importance of context: an exploration of factors influencing the adoption of student-centered teaching among chemistry, biology, and physics faculty
Background: Research at the secondary and postsecondary levels has clearly demonstrated the critical role that individual and contextual characteristics play in instructors’ decision to adopt educational innovations. Although recent research has shed light on factors influencing the teaching practices of science, technology, engineering, and mathematics (STEM) faculty, it is still not well understood how unique departmental environments impact faculty adoption of evidence-based instructional practices (EBIPs) within the context of a single institution. In this study, we sought to characterize the communication channels utilized by STEM faculty, as well as the contextual and individual factors that influence the teaching practices of STEM faculty at the departmental level. Accordingly, we collected survey and observational data from the chemistry, biology, and physics faculty at a single large research-intensive university in the USA. We then compared the influencing factors experienced by faculty in these different departments to their instructional practices.
Results: Analyses of the survey data reveal disciplinary differences in the factors influencing adoption of EBIPs. In particular, the physics faculty (n = 15) had primarily student-centered views about teaching and experienced the most positive contextual factors toward adoption of EBIPs. At the other end of the spectrum, the chemistry faculty (n = 20) had primarily teacher-centered views and experienced contextual factors that hindered the adoption of student-centered practices. Biology faculty (n = 25) fell between these two groups. Classroom observational data reflected these differences: The physics classrooms were significantly more student-centered than the chemistry classrooms.
Conclusions: This study demonstrates that disciplinary differences exist in the contextual factors teaching conceptions that STEM faculty experience and hold, even among faculty within the same institution. Moreover, it shows that these differences are associated to the level of adoption of student-centered teaching practices. This work has thus identified the critical need to carefully characterize STEM faculty’s departmental environment and conceptions about teaching before engaging in instructional reform efforts, and to adapt reform activities to account for these factors. The results of this study also caution the over generalization of findings from a study focused on one type of STEM faculty in one environment to all STEM faculty in any environment
- …