134 research outputs found
Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?
Before particulate matter that settles as ‘primary flux’ from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying interplay of different rotational flow components (residual, tidal, near-inertial) within the BBL. Using information from previously published empirical and theoretical relations between fluid and biogeochemical dynamics at the scale of individual particle aggregates, a conceptual and semi-quantitative picture of a mechanism was derived that explains how the neap/spring fluid-dynamic oscillations may translate through particle dynamics into neap/spring oscillations of biogeochemical aggregate decomposition (microbially driven organic-matter breakdown, biomineral dissolution). It is predicted that, during transitions from neap into spring tides, increased aggregation in near-seafloor waters and/or reduced deposition of aggregates at the seafloor coincides with reduced biogeochemical particulate-matter decomposition in near-seafloor waters. By contrast, during transitions from spring into neap tides, enhanced biogeochemical particulate-matter decomposition in near-seafloor waters is predicted to coincide with increased deposition of particulate matter at the seafloor. This study suggests that, in addition to current speed, the specifics and subtleties of the interplay of different rotational flow components can be an important control on how the primary flux from the interior ocean is translated into the depositional flux, with potential implications for sedimentary carbon deposition, benthic food supply and possibly even the sedimentary records of environmental change
An abyssal hill fractionates organic and inorganic matter in deep-sea surface sediments
Current estimates suggest that more than 60% of the global seafloor are covered by millions of abyssal hills and mountains. These features introduce spatial fluid-dynamic granularity whose influence on deep-ocean sediment biogeochemistry is unknown. Here we compare biogeochemical surface-sediment properties from a fluid-dynamically well-characterized abyssal hill and upstream plain: (1) In hill sediments, organic-carbon and -nitrogen contents are only about half as high as on the plain while proteinaceous material displays less degradation; (2) on the hill, more coarse-grained sediments (reducing particle surface area) and very variable calcite contents (influencing particle surface charge) are proposed to reduce the extent, and influence compound-specificity, of sorptive organic-matter preservation. Further studies are needed to estimate the representativeness of the results in a global context. Given millions of abyssal hills and mountains, their integrative influence on formation and composition of deep-sea sediments warrants more attention
Agglutination of benthic foraminifera in relation to mesoscale bathymetric features in the abyssal NE Atlantic (Porcupine Abyssal Plain)
Abyssal hills, small topographic features rising above the abyssal seafloor (< 1000 m altitude), have distinct environmental characteristics compared to abyssal plains, notably the presence of coarser-grained sediments. As a result, they are a major source of habitat heterogeneity in the deep sea. The aim of this study was to investigate whether there is a link between abyssal hills and the test characteristics of selected agglutinated benthic foraminiferal species. We analysed 1) the overall morphometry, and 2) the granulometric and chemical (elemental) characteristics of the agglutinated tests of ten common foraminiferal species (Adercotryma glomerata, Ammobaculites agglutinans, Cribrostomoides subglobosus, Lagenammina sp.1, Nodulina dentaliniformis, Portatrochammina murrayi, three Reophax sp. and Recurvoides sp. 9) at four sites (two on top of abyssal hills and two on the adjacent plain) in the area of the Porcupine Abyssal Plain Sustained Observatory, northeast Atlantic. The foraminiferal test data were compared with the particle size distribution and elemental composition of sediments from the study sites in order to explore possible grain size and mineral selectivity. We found differences in the visual appearance of the tests (i.e. the degree of irregularity in their shape), which was confirmed by morphometric analyses, related to seafloor topography. The agglutinated foraminifera selected different sized particles on hills and plains, reflecting the distinct granulometric characteristics of these settings. These characteristics (incorporation of coarse particles, test morphometry) could provide evidence for the recognition of ancient abyssal hill environments, as well as other palaeoceanographic settings that were characterised by enhanced current flow. Furthermore, analyses of sediment samples from the hill and plain sites using wavelength dispersive X-ray fluorescence (WD-XRF) yielded different elemental profiles from the plains, probably a result of winnowing on the hills, although all samples were carbonate-rich. In contrast, the majority of the agglutinated tests were rich in silica, suggesting a preferential selection for quartz
Species replacement dominates megabenthos beta diversity in a remote seamount setting
Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity
Anthropogenic influence on sediment transport in the Whittard Canyon, NE Atlantic
Unusual peaks in turbidity were detected in two branches of the Whittard Canyon in June 2013. Enhanced nepheloid layers (ENLs) were defined as layers with concentrations of suspended particulate matter exceeding those of nepheloid layers typically observed in a given region. Here, ENLs had peaks in turbidity and elevated suspended particulate matter concentrations exceeding ~1 mg L−1 with the largest ENLs measuring between ~2–8mg L−1. The ENLs measured ~100–260m in vertical height and were detected inwater depths of between 640 and 2880 m. Vessel Monitoring System data showed that high spatial and temporal activity of potential bottom trawling vessels coincided with the occurrence of the ENLs. Molar C/N ratios of the suspended organic material from the ENLs showed a high degree of degradation. Regular occurrences of such events are likely to have implications for increased sediment fluxes, burial of organic carbon and alteration of benthic and canyon ecosystems
Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 290 (2010): 340-350, doi:10.1016/j.epsl.2009.12.030.Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on cooccurring
tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides
sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69-
71P, and MC16 from the south-western and central Panama Basin indicate no significant
addition of pre-aged alkenones by lateral advection. The strong temporal correspondence
between alkenones, foraminifera and total organic carbon (TOC) also implies negligible
contributions of aged terrigenous material. Considering controversial evidence for
sediment redistribution in previous studies of these sites, our data imply that the laterally
supplied material cannot stem from remobilization of substantially aged sediments.
Transport, if any, requires syn-depositional nepheloid layer transport and redistribution
of low-density or fine-grained components within decades of particle formation. Such
rapid and local transport minimizes the potential for temporal decoupling of proxies
residing in different grain size fractions and thus facilitates comparison of various proxies
for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal
tests from a glacial depth interval of core Y69-71P may result from episodic spillover of
fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards
the north.This study was funded by the Helmholtz Young Investigators Group „Applications of
molecular 14C analysis for the study of sedimentation processes and carbon cycling in
marine sediments”. G.M.
acknowledges financial support from WHOI postdoctoral scholarship program. T.I.E. was
supported by NSF grant OCE-0526268. A.C.M. was supported by NSF grant ATM0602395
Thorium 234 in bottom water at stations SO129_BWS-08 to SO129_CTD-17
Thorium 234 in bottom water at stations SO129_BWS-08 to SO129_CTD-1
Thorium 234 in sediment core 13201-005, subcore 9
Thorium 234 in sediment core 13201-005, subcore 1
Thorium 234 in bottom water at stations M42/2_418 to M42/2_429-3
Thorium 234 in bottom water at stations M42/2_418 to M42/2_429-
Thorium 234 in sediment core SO118_MC-05
sediment depth of -0.25 corresponds to sampling of a fluff layer located on top of the sediment surfac
- …
