90 research outputs found

    Genetic Metabolic Complementation Establishes a Requirement for GDP-Fucose in \u3cem\u3eLeishmania\u3c/em\u3e

    Get PDF
    To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Arap) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes (FKP40 and AFKP80) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Arap into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Arap from exogenous d-Arap, both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δafkp80− null mutants ablated d-Arap modifications of LPG as predicted, whereas Δfkp40− null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major, but unexpectedly, we were unable to generate fkp40−/afkp80− double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed “genetic metabolite complementation.” First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δfkp40−/Δafkp80− double mutant was now readily obtained. As expected, the Δfkp40−/Δafkp80−/+TbGMD-GMER line lacked the capacity to generate GDP-Arap, while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s)

    Deficiency in β1,3-Galactosyltransferase of a Leishmania major Lipophosphoglycan Mutant Adversely Influences the Leishmania-Sand Fly Interaction

    Get PDF
    To study the function of side chain oligosaccharides of the cell-surface lipophosphoglycan (LPG), mutagenized Leishmania major defective in side chain biosynthesis were negatively selected by agglutination with the monoclonal antibody WIC79.3, which recognizes the galactose-containing side chains of L. major LPG. One such mutant, called Spock, lacked the ability to bind significantly to midguts of the natural L. major vector, Phlebotomus papatasi, and to maintain infection in the sand fly after excretion of the digested bloodmeal. Biochemical characterization of Spock LPG revealed its structural similarity to the LPG of Leishmania donovani, a species whose inability to bind to and maintain infections in P. papatasi midguts has been strongly correlated with the expression of a surface LPG lacking galactose-terminated oligosaccharide side chains. An in vitro galactosyltransferase assay using wild-type or Spock membranes was used to determine that the defect in Spock LPG biosynthesis is a result of defective beta1,3-galactosyltransferase activity as opposed to a modification of LPG, which would prevent it from serving as a competent substrate for galactose addition. The results of these experiments show that Spock lacks the beta1, 3-galactosyltransferase for side chain addition and that the LPG side chains are required for L. major to bind to and to produce transmissible infection in P. papatasi

    La dégradation de la Synaptotagmine XI par la Leishmanolysine mène à une sécrétion déréglementée de cytokines

    Get PDF
    Les Synaptotagmines (Syts) forment un groupe de protéines membranaires de type I qui régulent l’amarrage et la fusion de vésicules dans des processus tels que l'exocytose et la phagocytose. Nous avons récemment découvert que la Syt XI est associée aux endosomes de recyclage et aux lysosomes et régule négativement la sécrétion du facteur de nécrose tumorale (TNF) et de l'interleukine 6 (IL-6). La Leishmanolysine (GP63) est une protéase à zinc qui permet au parasite Leishmania d’altérer plusieurs aspects de la biologie des macrophages. L’action de la GP63 mène à un défaut de transcription, traduction et de présentation antigénique. Dans cette recherche, nous démontrons que la Syt XI est dégradée par la GP63 et exclue de la vacuole parasitophore de Leishmania de façon lipophosphoglycan-dépendante. Remarquablement, la Syt XI est clivée directement par la GP63. En effet, la Syt XI recombinante est dégradée par des parasites vivants et par des lysats de parasites. En revanche, la chélation du zinc abolit le clivage de la Syt XI. D’autre part, les macrophages infectés par Leishmania relâchent du TNF et de l’IL-6 de manière GP63-dépendante. Pour démontrer que la sécrétion de ces cytokines dépend d’une dégradation de la Syt XI par la GP63, une inhibition de l’expression de la Syt XI par des ARN interférants (siRNA) suivie d’une infection par Leishmania a été effectuée. Cette expérience a révélé que les effets des siRNA pour Syt XI et de la dégradation par la GP63 n’affectent pas la sécrétion des cytokines de façon cumulative. En conclusion, nos résultats dévoilent un mécanisme dans lequel Leishmania induit une sécrétion de cytokines pro-inflammatoires par la dégradation de la Syt XI. Ces travaux vont permettre d'améliorer notre compréhension sur la façon dont Leishmania module la réponse immunitaire

    Differential Impact of LPG-and PG-Deficient \u3cem\u3eLeishmania major\u3c/em\u3e Mutants on the Immune Response of Human Dendritic Cells

    Get PDF
    BACKGROUND: Leishmania major infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction. METHODOLOGY/PRINCIPAL FINDINGS: Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating L. major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-), or generally deficient for all PGs, (FV1 lpg2-). Infection with metacyclic, infective stage, L. major or purified LPG induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2- infections revealed that FV1 lpg1- mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB) and Interferon Regulatory Factor (IRF) mediated transcription. CONCLUSIONS/SIGNIFICANCE: These data suggest that L. major LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring Leishmania surface glycoconjugates that result in modulation of host cellular IL12

    Retention and loss of RNA interference pathways in trypanosomatid protozoans

    Get PDF
    RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the parasite flagellum. This sets the stage for the systematic manipulation of gene expression through RNAi in these predominantly diploid asexual organisms, and may also allow selective RNAi-based chemotherapy. Functional evolutionary surveys of RNAi genes established that RNAi activity was lost after the separation of the Leishmania subgenus Viannia from the remaining Leishmania species, a divergence associated with profound changes in the parasite infectious cycle and virulence. The genus Leishmania therefore offers an accessible system for testing hypothesis about forces that may select for the loss of RNAi during evolution, such as invasion by viruses, changes in genome plasticity mediated by transposable elements and gene amplification (including those mediating drug resistance), and/or alterations in parasite virulence

    Differential Midgut Attachment of Leishmania (Viannia) braziliensis in the Sand Flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia

    Get PDF
    The interaction between Leishmania and sand flies has been demonstrated in many Old and New World species. Besides the morphological differentiation from procyclic to infective metacyclic promastigotes, the parasite undergoes biochemical transformations in its major surface lipophosphoglycan (LPG). An upregulation of β-glucose residues was previously shown in the LPG repeat units from procyclic to metacyclic phase in Leishmania (Viannia) braziliensis, which has not been reported in any Leishmania species. LPG has been implicated as an adhesion molecule that mediates the interaction with the midgut epithelium of the sand fly in the Subgenus Leishmania. These adaptations were explored for the first time in a species from the Subgenus Viannia, L. (V.) braziliensis with its natural vectors Lutzomyia (Nyssomyia) intermedia and Lutzomyia (Nyssomyia) whitmani. Using two in vitro binding techniques, phosphoglycans (PGs) derived from procyclic and metacyclic parasites were able to bind to the insect midgut and inhibit L. braziliensis attachment. Interestingly, L. braziliensis procyclic parasite attachment was ∼11-fold greater in the midgut of L. whitmani than in L. intermedia. The epidemiological relevance of L. whitmani as a vector of American Cutaneous Leishmaniasis (ACL) in Brazil is discussed

    A Subset of Liver NK T Cells is Activated During \u3cem\u3eLeishmania donovani\u3c/em\u3e Infection by CD1d-Bound Lipophosphoglycan

    Get PDF
    Natural killer (NK) T cells are activated by synthetic or self-glycolipids and implicated in innate host resistance to a range of viral, bacterial, and protozoan pathogens. Despite the immunogenicity of microbial lipoglycans and their promiscuous binding to CD1d, no pathogen-derived glycolipid antigen presented by this pathway has been identified to date. In the current work, we show increased susceptibility of NK T cell–deficient CD1d−/− mice to Leishmania donovani infection and Leishmania-induced CD1d-dependent activation of NK T cells in wild-type animals. The elicited response was Th1 polarized, occurred as early as 2 h after infection, and was independent from IL-12. The Leishmania surface glycoconjugate lipophosphoglycan, as well as related glycoinositol phospholipids, bound with high affinity to CD1d and induced a CD1d-dependent IFNγ response in naive intrahepatic lymphocytes. Together, these data identify Leishmania surface glycoconjugates as potential glycolipid antigens and suggest an important role for the CD1d–NK T cell immune axis in the early response to visceral Leishmania infection

    A Subset of Liver NK T Cells Is Activated during Leishmania donovani Infection by CD1d-bound Lipophosphoglycan

    Get PDF
    Natural killer (NK) T cells are activated by synthetic or self-glycolipids and implicated in innate host resistance to a range of viral, bacterial, and protozoan pathogens. Despite the immunogenicity of microbial lipoglycans and their promiscuous binding to CD1d, no pathogen-derived glycolipid antigen presented by this pathway has been identified to date. In the current work, we show increased susceptibility of NK T cell–deficient CD1d−/− mice to Leishmania donovani infection and Leishmania-induced CD1d-dependent activation of NK T cells in wild-type animals. The elicited response was Th1 polarized, occurred as early as 2 h after infection, and was independent from IL-12. The Leishmania surface glycoconjugate lipophosphoglycan, as well as related glycoinositol phospholipids, bound with high affinity to CD1d and induced a CD1d-dependent IFNγ response in naive intrahepatic lymphocytes. Together, these data identify Leishmania surface glycoconjugates as potential glycolipid antigens and suggest an important role for the CD1d–NK T cell immune axis in the early response to visceral Leishmania infection
    corecore