31 research outputs found

    Associations between cardiorespiratory fitness, motor competence, and adiposity in children

    Get PDF
    We investigated the associations of motor competence (MC) with peak oxygen uptake (V.O-2peak), peak power output (W-max), and body fat percentage (BF%) and whether measures of cardiorespiratory fitness (CRF) modify the associations between MC and BF%. Altogether, 35 children (aged 7-11 years) in the CHIPASE Study and 297 in PANIC Study (aged 9-11 years) participated in the study. MC was assessed using KTK and modified Eurofit tests. V.O-2peak and W-max were measured by maximal exercise test on a cycle ergometer and scaled by lean mass (LM) or body mass (BM). BF% was assessed either by bioimpedance (CHIPASE) or DXA (PANIC). MC was not associated with V.O-2peak/LM (standardized regression coefficient beta = 0.073-0.188, P > .083). V.O-2peak/BM and W-max/LM and BM were positively associated with MC (beta = 0.158-0.610, P .381), was inversely associated with BF%. Furthermore, the associations of MC with BF% were not modified by CRF. These results suggest that the positive associations between MC and CRF scaled by BM are a function of adiposity and not peak aerobic power and that CRF is not modifying factor in the associations of MC and BF%.Peer reviewe

    Changes in body composition by age and obesity status in preschool-aged children: the STEPS study

    Get PDF
    Background/Objectives: Obesity in early childhood is associated with increased risk of chronic diseases, but studies of body composition at preschool ages are sparse. Therefore, we examined differences in body composition by sex and obesity status in Finnish preschool-aged children and within-individual changes in body composition in normal and overweight children.Subject/Methods: Body composition was measured using segmental multifrequency bioimpedance analysis (BIA) in 476 children and in 781 children at age 3 and 5 years, respectively. Of those, 308 had repeated BIA measurements at both ages. BMI-SDS was used for classification of normal weight and overweight children.Results: Sex difference in the amount of lean mass (LM) was already seen at 3 years of age (boys 11.7 kg, girls 11.3 kg; p p p p Conclusions: BIA-assessed body composition differs by sex and obesity status already at age of 3 years. For children who are or become overweight at very young age, the patterns for the changes in LM and FM by age are different than for normal weight children.</div

    Associations of physical activity, sedentary time, and cardiorespiratory fitness with heart rate variability in 6- to 9-year-old children: the PANIC study

    Get PDF
    Abstract: Purpose: To study the associations of physical activity (PA), sedentary time (ST), and cardiorespiratory fitness (CRF) with heart rate variability (HRV) in children. Methods: The participants were a population sample of 377 children aged 6–9 years (49% boys). ST, light PA (LPA), moderate PA (MPA), vigorous PA (VPA), and moderate-to-vigorous PA (MVPA), and PA energy expenditure (PAEE) were assessed using a combined heart rate and movement sensor, maximal power output per kilograms of lean body mass as a measure of CRF by maximal cycle ergometer exercise test, and HRV variables (SDNN, RMSSD, LF, and HF) using 5 min resting electrocardiography. Data were analysed by linear regression adjusted for years from peak height velocity. Results: In boys, ST was inversely associated (β = − 0.185 to − 0.146, p ≤ 0.049) and MVPA, VPA, PAEE, and CRF were directly associated (β = 0.147 to 0.320, p ≤ 0.048) with HRV variables. CRF was directly associated with all HRV variables and PAEE was directly associated with RMSSD after mutual adjustment for ST, PAEE, and CRF (β = 0.169 to 0.270, p ≤ 0.046). In girls, ST was inversely associated (β = − 0.382 to − 0.294, p < 0.001) and LPA, MPA, VPA, MVPA, and PAEE were directly associated with HRV variables (β = 0.144 to 0.348, p ≤ 0.049). After mutual adjustment for ST, PAEE, and CRF, only the inverse associations of ST with HRV variables remained statistically significant. Conclusions: Higher ST and lower PA and CRF were associated with poorer cardiac autonomic nervous system function in children. Lower CRF in boys and higher ST in girls were the strongest correlates of poorer cardiac autonomic function

    Physical activity and sedentary behaviour in relation to cardiometabolic risk in children: cross-sectional findings from the Physical Activity and Nutrition in Children (PANIC) Study

    Get PDF
    BACKGROUND: Lower levels of physical activity (PA) and sedentary behaviour (SB) have been associated with increased cardiometabolic risk among children. However, little is known about the independent and combined associations of PA and SB as well as different types of these behaviours with cardiometabolic risk in children. We therefore investigated these relationships among children. METHODS: The subjects were a population sample of 468 children 6–8 years of age. PA and SB were assessed by a questionnaire administered by parents and validated by a monitor combining heart rate and accelerometry measurements. We assessed body fat percentage, waist circumference, blood glucose, serum insulin, plasma lipids and lipoproteins and blood pressure and calculated a cardiometabolic risk score using population-specific Z-scores and a formula waist circumference + insulin + glucose + triglycerides - HDL cholesterol + mean of systolic and diastolic blood pressure. We analysed data using multivariate linear regression models. RESULTS: Total PA was inversely associated with the cardiometabolic risk score (β = -0.135, p = 0.004), body fat percentage (β = -0.155, p < 0.001), insulin (β = -0.099, p = 0.034), triglycerides (β = -0.166, p < 0.001), VLDL triglycerides (β = -0.230, p < 0.001), VLDL cholesterol (β = -0.168, p = 0.001), LDL cholesterol (β = -0.094, p = 0.046) and HDL triglycerides (β = -0.149, p = 0.004) and directly related to HDL cholesterol (β = 0.144, p = 0.002) adjusted for age and gender. Unstructured PA was inversely associated with the cardiometabolic risk score (β = -0.123, p = 0.010), body fat percentage (β = -0.099, p = 0.027), insulin (β = -0.108, p = 0.021), triglycerides (β = -0.144, p = 0.002), VLDL triglycerides (β = -0.233, p < 0.001) and VLDL cholesterol (β = -0.199, p < 0.001) and directly related to HDL cholesterol (β = 0.126, p = 0.008). Watching TV and videos was directly related to the cardiometabolic risk score (β = 0.135, p = 0.003), body fat percentage (β = 0.090, p = 0.039), waist circumference (β = 0.097, p = 0.033) and systolic blood pressure (β = 0.096, p = 0.039). Resting was directly associated with the cardiometabolic risk score (β = 0.092, p = 0.049), triglycerides (β = 0.131, p = 0.005), VLDL triglycerides (β = 0.134, p = 0.009), VLDL cholesterol (β = 0.147, p = 0.004) and LDL cholesterol (β = 0.105, p = 0.023). Other types of PA and SB had less consistent associations with cardiometabolic risk factors. CONCLUSIONS: The results of our study emphasise increasing total and unstructured PA and decreasing watching TV and videos and other sedentary behaviours to reduce cardiometabolic risk among children. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01803776

    Adiposity, physical activity and neuromuscular performance in children.

    Get PDF
    We investigated the associations of body fat percentage (BF%), objectively assessed moderate-to-vigorous physical activity (MVPA) and different types of physical activity assessed by a questionnaire with neuromuscular performance. The participants were 404 children aged 6-8 years. BF% was assessed using dual-energy x-ray absorptiometry and physical activity by combined heart rate and movement sensing and a questionnaire. The results of 50-m shuttle run, 15-m sprint run, hand grip strength, standing long jump, sit-up, modified flamingo balance, box-and-block and sit-and-reach tests were used as measures of neuromuscular performance. Children who had a combination of higher BF% and lower levels of physical activity had the poorest performance in 50-m shuttle run, 15-m sprint run and standing long jump tests. Higher BF% was associated with slower 50-m shuttle run and 15-m sprint times, shorter distance jumped in standing long jump test, fewer sit-ups, more errors in balance test and less cubes moved in box-and-block test. Higher levels of physical activity and particularly MVPA assessed objectively by combined accelerometer and heart rate monitor were related to shorter 50-m shuttle run and 15-m sprint times. In conclusion, higher BF% and lower levels of physical activity and particularly the combination of these two factors were associated with worse neuromuscular performance.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/02640414.2015.113480

    Cardiorespiratory Fitness, Physical Activity, and Insulin Resistance in Children

    Get PDF
    Purpose: Few studies have investigated the independent and joint associations of cardiorespiratory fitness (CRF) and body fat percentage (BF%) with insulin resistance in children. We investigated the independent and combined associations of CRF and BF% with fasting glycaemia and insulin resistance and their interactions with physical activity (PA) and sedentary time among 452 children aged 6–8 years. Methods: We assessed CRF with a maximal cycle ergometer exercise test and used allometrically scaled maximal power output (Wmax) for lean body mass (LM1.13) and body mass (BM1) as measures of CRF. BF% and LM were measured by dual-energy X-ray absorptiometry, fasting glycaemia by fasting plasma glucose, and insulin resistance by fasting serum insulin and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). PA energy expenditure (PAEE), moderate-to-vigorous PA (MVPA), and sedentary time were assessed by combined movement and heart rate sensor. Results: Wmax/LM1.13 was not associated with glucose (β=0.065, 95% CI=-0.031 to 0.161), insulin (β=-0.079, 95% CI=-0.172 to 0.015), or HOMA-IR (β=-0.065, 95% CI=-0.161 to 0.030). Wmax/BM1 was inversely associated with insulin (β=-0.289, 95% CI=-0.377 to -0.200) and HOMA-IR (β=-0.269, 95% CI=-0.359 to -0.180). BF% was directly associated with insulin (β=0.409, 95% CI=0.325 to 0.494) and HOMA-IR (β=0.390, 95% CI=0.304 to 0.475). Higher Wmax/BM1, but not Wmax/LM1.13, was associated with lower insulin and HOMA-IR in children with higher BF%. Children with higher BF% and who had lower levels of MVPA or higher levels of sedentary time had the highest insulin and HOMA-IR. Conclusion: Children with higher BF% together with less MVPA or higher levels of sedentary time had the highest insulin and HOMA-IR. CRF appropriately controlled for body size and composition using LM was not related to insulin resistance among children.SB was supported by UK Medical Research Council (MC_UU_12015/3) and the NIHR Biomedical Research Centre Cambridge [IS-BRC-1215-20014]

    A 2 year physical activity and dietary intervention attenuates the increase in insulin resistance in a general population of children: the PANIC study

    Get PDF
    Funder: The NIHR Biomedical Research Centre in CambridgeFunder: Finnish Innovation Fund SitraFunder: Foundation for Paediatric ResearchFunder: Ministry of Social Affairs and Health of FinlandFunder: Yrjö Jahnsson FoundationFunder: Research Committee of the Kuopio University Hospital Catchment Area (State Research Funding)Funder: The city of KuopioFunder: The UK Medical Research CouncilFunder: Finnish Cultural FoundationFunder: Ministry of Education and Culture of FinlandFunder: Juho Vainio FoundationFunder: Paavo Nurmi FoundationFunder: Diabetes Research Foundation in FinlandFunder: Finnish Foundation for Cardiovascular ResearchFunder: Social Insurance Institution of FinlandAbstract: Aims/hypothesis: We studied for the first time the long-term effects of a combined physical activity and dietary intervention on insulin resistance and fasting plasma glucose in a general population of predominantly normal-weight children. Methods: We carried out a 2 year non-randomised controlled trial in a population sample of 504 children aged 6–9 years at baseline. The children were allocated to a combined physical activity and dietary intervention group (306 children at baseline, 261 children at 2-year follow-up) or a control group (198 children, 177 children) without blinding. We measured fasting insulin and fasting glucose, calculated HOMA-IR, assessed physical activity and sedentary time by combined heart rate and body movement monitoring, assessed dietary factors by a 4 day food record, used the Finnish Children Healthy Eating Index (FCHEI) as a measure of overall diet quality, and measured body fat percentage (BF%) and lean body mass by dual-energy x-ray absorptiometry. The intervention effects on insulin, glucose and HOMA-IR were analysed using the intention-to-treat principle and linear mixed-effects models after adjustment for sex, age at baseline, and pubertal status at baseline and 2 year follow-up. The measures of physical activity, sedentary time, diet and body composition at baseline and 2 year follow-up were entered one-by-one as covariates into the models to study whether changes in these variables might partly explain the observed intervention effects. Results: Compared with the control group, fasting insulin increased 4.65 pmol/l less (absolute change +8.96 vs +13.61 pmol/l) and HOMA-IR increased 0.18 units less (+0.31 vs +0.49 units) over 2 years in the combined physical activity and dietary intervention group. The intervention effects on fasting insulin (regression coefficient β for intervention effect −0.33 [95% CI −0.62, −0.04], p = 0.026) and HOMA-IR (β for intervention effect −0.084 [95% CI −0.156, −0.012], p = 0.023) were statistically significant after adjustment for sex, age at baseline, and pubertal status at baseline and 2 year follow-up. The intervention had no effect on fasting glucose, BF% or lean body mass. Changes in total physical activity energy expenditure, light physical activity, moderate-to-vigorous physical activity, total sedentary time, the reported consumption of high-fat (≥60%) vegetable oil-based spreads, and FCHEI, but not a change in BF% or lean body mass, partly explained the intervention effects on fasting insulin and HOMA-IR. Conclusions/interpretation: The combined physical activity and dietary intervention attenuated the increase in insulin resistance over 2 years in a general population of predominantly normal-weight children. This beneficial effect was partly mediated by changes in physical activity, sedentary time and diet but not changes in body composition. Trial registration: ClinicalTrials.gov NCT01803776 Graphical abstrac

    The effects of a 2-year physical activity and dietary intervention on plasma lipid concentrations in children: the PANIC Study

    Get PDF
    Funder: Opetus- ja Kulttuuriministeriö; doi: http://dx.doi.org/10.13039/501100003126Funder: Sosiaali- ja Terveysministeriö; doi: http://dx.doi.org/10.13039/501100008487Abstract: Purpose: We studied the effects of a physical activity and dietary intervention on plasma lipids in a general population of children. We also investigated how lifestyle changes contributed to the intervention effects. Methods: We carried out a 2-year controlled, non-randomized lifestyle intervention study among 504 mainly prepubertal children aged 6–9 years at baseline. We assigned 306 children to the intervention group and 198 children to the control group. We assessed plasma concentrations of total, LDL, HDL, and VLDL cholesterol, triglycerides, HDL triglycerides, and VLDL triglycerides. We evaluated the consumption of foods using 4-day food records and physical activity using a movement and heart rate sensor. We analyzed data using linear mixed-effect models adjusted for age at baseline, sex, and pubertal stage at both time points. Furthermore, specific lifestyle variables were entered in these models. Results: Plasma LDL cholesterol decreased in the intervention group but did not change in the control group ( − 0.05 vs. 0.00 mmol/L, regression coefficient (β) = − 0.0385, p = 0.040 for group*time interaction). This effect was mainly explained by the changes in the consumption of high-fat vegetable oil-based spreads (β = − 0.0203, + 47% change in β) and butter-based spreads (β = − 0.0294, + 30% change in β), moderate-to-vigorous physical activity (β = − 0.0268, + 30% change in β), light physical activity (β = − 0.0274, + 29% change in β) and sedentary time (β = − 0.0270, + 30% change in β). The intervention had no effect on other plasma lipids. Conclusion: Lifestyle intervention resulted a small decrease in plasma LDL cholesterol concentration in children. The effect was explained by changes in quality and quantity of dietary fat and physical activity. Clinical Trial Registry Number: NCT01803776, ClinicalTrials.go

    Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    Get PDF
    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor

    Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: the Physical Activity and Nutrition in Children study Summary Correspondence Accepted for publication

    No full text
    Objective and methods: We compared InBody 720 segmental multifrequency bioimpedance analysis (SMF-BIA) with Lunar Prodigy Advance dual-energy X-ray absorptiometry (DXA) in assessment of body composition among 178 predominantly prepubertal children. Segmental agreement analysis of body compartments was carried out, and inter-relationships of anthropometric and other measures of body composition were defined. Moreover, the relations of different reference criteria for excess body fat were evaluated. Results: The prevalence of excess body fat varies greatly according to the used criteria. Intraclass and Pearson&apos;s correlations between SMF-BIA and DXA were &gt;0Á92 in total body and &gt;0Á74 in regional measures. SMF-BIA underestimated percentage body fat (%BF) and fat mass (FM), and overestimated lean mass (LM) and percentage LM with significant offset trend bias. Higher adiposity increased offsets, and overall agreement was poorer in girls. On average, %BF offsets (girls/boys) and limits of agreement (LA) were 3Á9/1Á6% [(À)1Á4-9Á2%/(À)3Á4-6Á7%]. Interestingly percentage offsets of fat content (%BF: 18Á9/10Á1%, FM: 18Á8/ 11Á1%) showed no significant bias trends indicating that the corresponding absolute methodological offset depends on the amount of fat content. The smallest percentage offset was found with LM: 4Á3/0Á1%, referring offset (LA) of 0Á88/ 0Á03 kg (AE2Á05/AE1Á71 kg). Correspondingly, segmental LM had poorer agreement than total body LM. All anthropometrics except for the waist-to-hip ratio showed strong correlations (r = 0Á76-0Á95) with abdominal and total body fat. Conclusion: Segmental multifrequency bioimpedance analysis is precise enough for total-LM analysis and had also sufficient trueness for total body composition analysis to be used in epidemiological purposes. There is need to generate scientifically and clinically relevant criteria and reference values for excess body fat
    corecore