13 research outputs found
A High-Level Modeling Framework for the Design and Optimization of Complex CT Functions
International audienceNovel CMOS technologies are rapidly migrating towards the nanometer world. The design and optimization of complex analog circuits employing these processes is impracticable when using only transistor-level electronic design automation (EDA) tools. Efficient design methodologies including behavioral modeling are inevitable, but the high-level models should incorporate accurate circuit characteristics and technological limitations. One solution consists in using a refined top-down design process where the macro-models are extracted from the analog block elements (e.g. amplifiers, filters) implemented on specific technologies. These fast-simulating models can be used for the high-level simulation and optimization of the entire system. We propose in this paper a complete design methodology employing the above elements and the corresponding application framework based on the interface between MATLAB and CADENCE software tools. SIMULINK and VHDL-AMS are used for the high-level system modeling. A continuous-time (CT) Sigma-Delta modulator application is presented
Efficient Optimization Methodology for CT Functions Based on a Modified Baysian Kriging Approach
International audienceThe conception of analog and mixed-signal functions requires great effort because the complex analog parts should be recursively optimized based not only on system-level requirements but also on technological limitations and imperfections. High-level behavioral models used for chip-level simulations can be employed using multi-domain hardware description languages (HDL), but they are usually manually written and lack technological characteristics. Moreover, automatic resizing and optimization at the transistor level are very limited, and the behavioral models cannot be re-adjusted to changes at the transistor level. In this paper, we present an efficient design methodology implying the automatic optimization of cells at the transistor level using a modified Bayesian Kriging approach and the extraction of robust analog macro-models, which can be directly regenerated during the optimization process. Coherent results were obtained when using the proposed methodology for the conception of a sixthorder continuous-time (CT) Sigma-Delta (ΣΔ) modulator
Microstructural Analysis of Three Layer Depositions with Ni and Ti on Steel Using the EDS Method
The ESD method (electro spark deposition) is used to cover through deposition the active parts of machines, working in heavy abrasive wear moist environment as well as in a dry environment. The paper proposes the use ESD method for Fe-C alloys for obtaining thin layers system with physical-mechanical properties improved comparing to base material. Due to polar effect, the predominant transfer of anode’s material (electrode) towards cathode (piece) assures the forming of the superficial layer with well-determined physical - chemical properties. In addition, in multiple layers case the deposit of a supplementary layer emphasizes the diffusion of the first deposited layer by anchoring more the coating
Effective Modeling of CT Functions for Fast Simulations Using MATLAB-Simulink and VHDL-AMS Applied to Sigma-Delta Architectures
International audienceThe design, simulation and optimization of complex continuous-time (CT) circuits like Sigma-Delta modulators require large computation times when using only transistor-level analog simulators like CADENCE Spectre or PSpice. Effective high-level system modeling should be considered in order to reduce the conception effort. However, the closed-loop architecture characteristics and technology requirements should be strictly observed on the respective models. In this work, we present a design methodology and the resulted application tools implying the extraction of CADENCE schematics for analog elements into robust macro-models for MATLAB-SIMULINK and VHDL-AMS. Upon designer's choice, the resulted macromodels can be used to implement and optimize a whole modulator in the SIMULINK object-oriented environment or the code-based analog VHDL process. Using the proposed methodology, fast simulations of a sixth-order CT Sigma-Delta modulator have been performed
Mise en place d'une démarche de conception pour circuits hautes performances basée sur des méthodes d'optimisation automatique
The aim of this thesis is to establish an efficient analog design methodology, the algorithms and the corresponding design tools which can be employed in the dynamic conception of linear continuous-time (CT) functions. The purpose is to assure that the performance figures for a complete system can be rapidly investigated, but with comparable accuracy to the transistor-level evaluations. A first research direction implied the development of the novel design methodology based on the automatic optimization process of transistor-level cells using a modified Bayesian Kriging approach and the synthesis of robust high-level analog behavioral models in environments like Mathworks – Simulink, VHDL-AMS or Verilog-A.The macro-model extraction process involves a complete set of analyses (DC, AC, transient, parametric, Harmonic Balance) which are performed on the analog schematics implemented on a specific technology process. Then, the extraction and calculus of a multitude of figures of merit assures that the models include the low-level characteristics and can be directly regenerated during the optimization process.The optimization algorithm uses a Bayesian method, where the evaluation space is created by the means of a Kriging surrogate model, and the selection is effectuated by using the expected improvement (EI) criterion subject to constraints.A conception tool was developed (SIMECT), which was integrated as a Matlab toolbox, including all the macro-models extraction and automatic optimization techniques.Ce travail de thèse porte sur le développement d’une méthodologie efficace pour la conception analogique, des algorithmes et des outils correspondants qui peuvent être utilisés dans la conception dynamique de fonctions linéaires à temps continu. L’objectif principal est d’assurer que les performances pour un système complet peuvent être rapidement investiguées, mais avec une précision comparable aux évaluations au niveau transistor.Une première direction de recherche a impliqué le développement de la méthodologie de conception basée sur le processus d'optimisation automatique de cellules au niveau transistor et la synthèse de macro-modèles analogiques de haut niveau dans certains environnements comme Mathworks - Simulink, VHDL-AMS ou Verilog-A. Le processus d'extraction des macro-modèles se base sur un ensemble complet d'analyses (DC, AC, transitoire, paramétrique, Balance Harmonique) qui sont effectuées sur les schémas analogiques conçues à partir d’une technologie spécifique. Ensuite, l'extraction et le calcul d'une multitude de facteurs de mérite assure que les modèles comprennent les caractéristiques de bas niveau et peuvent être directement régénéré au cours de l'optimisation.L'algorithme d'optimisation utilise une méthode bayésienne, où l'espace d’évaluation est créé à partir d'un modèle de substitution (krigeage dans ce cas), et la sélection est effectuée en utilisant le critère d’amélioration (Expected Improvement - EI) sujet à des contraintes. Un outil de conception a été développé (SIMECT), qui a été intégré comme une boîte à outils Matlab, employant les algorithmes d’extraction des macro-modèles et d'optimisation automatique