180 research outputs found

    Effect of terbutaline on hyperpnoea-induced bronchoconstriction and urinary club cell protein 16 in athletes

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund and is distributed by the Creative Commons CC-BY 3.0 license, under which all are free to reuse or distribute the article under the condition that this original publication must be cited.Repeated injury of the airway epithelium caused by hyperpnoea of poorly conditioned air has been proposed as a key factor in the pathogenesis of exercise-induced bronchoconstriction (EIB) in athletes. In animals, the short-acting β2-agonist terbutaline has been shown to reduce dry airflow-induced bronchoconstriction and the associated shedding of airway epithelial cells. Our aim was to test the efficacy of inhaled terbutaline in attenuating hyperpnoea-induced bronchoconstriction and airway epithelial injury in athletes. Twenty-seven athletes with EIB participated in a randomized, double-blind, placebo-controlled, crossover study. Athletes completed an 8-min eucapnic voluntary hyperpnoea (EVH) test with dry air on two separate days 15 min after inhaling 0.5 mg terbutaline or a matching placebo. Forced expiratory volume in 1 s (FEV1) and urinary concentration of the club cell (Clara cell) protein 16 (CC16, a marker of airway epithelial perturbation) were measured before and up to 60 min after EVH. The maximum fall in FEV1 of 17 ± 8% (SD) on placebo was reduced to 8 ± 5% following terbutaline (P < 0.001). Terbutaline gave bronchoprotection (i.e., post-EVH FEV1 fall <10%) to 22 (81%) athletes. EVH caused an increase in urinary excretion of CC16 in both conditions (P < 0.001), and terbutaline significantly reduced this rise (pre- to postchallenge CC16 increase 416 ± 495 pg/μmol creatinine after placebo vs. 315 ± 523 pg/μmol creatinine after terbutaline, P = 0.016). These results suggest that the inhalation of a single therapeutic dose of terbutaline offers significant protection against hyperpnoea-induced bronchoconstriction and attenuates acute airway epithelial perturbation in athletes.World Anti Doping Agenc

    Immunospecific Antibody Concentration in Egg Yolk of Chickens Orally Immunised with Varying Doses of Bovine Serum Albumin and the Mucosal Adjuvant, RhinoVax®, using Different Immunization Regimes

    Get PDF
    Antibody harvested from eggs of immunised chickens, IgY, has proven to be a non-invasive alternative to  antibodies purified from serum of mammals. Taking the non-invasive concept further, the development of  oral immunization techniques combined with IgY harvest from chicken eggs may subsequently eliminate  all regulated procedures from polyclonal antibody production. In the present study, we report the effects of  varying the temporal administration mode of the antigen (immunogen) comparing dosing on three consecutive  days with dosing on five consecutive days, and of incorporating a mucosal adjuvant. Two antigen  doses were compared: 30 mg bovine serum albumin (BSA) and 300 mg BSA, with and without the mucosal  adjuvant, RhinoVax®, administered to laying chickens. The egg yolk of chickens dosed with BSA in combination  with 20% RhinoVax®, contained significantly higher concentrations of immunospecific IgY than  did egg yolks of chickens fed with BSA without adjuvant. The most efficient dose in the RhinoVax®-treated  groups was 300 mg BSA regardless of whether the chickens were initially immunised daily for three or  five days. A 3-day dosing regime with BSA alone also induced immunospecific IgY production. This study  confirms that RhinoVax® is an efficient oral adjuvant. It also demonstrates the efficacy of daily immunizations  on three or five consecutive days on immunospecific IgY production. The chickens received oral  booster immunizations one and two months after the initial immunization. No real effect could be recorded  after the second and third immunization, although the study did provide some evidence of memory  based on an optimum IgY concentration recorded after the 2nd immunization.

    Power Allocation for Uplink Communications of Massive Cellular-Connected UAVs

    Get PDF
    Cellular-connected unmanned aerial vehicle (UAV) has attracted a surge of research interest in both academia and industry. To support aerial user equipment (UEs) in the existing cellular networks, one promising approach is to assign a portion of the system bandwidth exclusively to the UAV-UEs. This is especially favorable for use cases where a large number of UAV-UEs are exploited, e.g., for package delivery close to a warehouse. Although the nearly line-of-sight (LoS) channels can result in higher powers received, UAVs can in turn cause severe interference to each other in the same frequency band. In this contribution, we focus on the uplink communications of massive cellular-connected UAVs. Different power allocation algorithms are proposed to either maximize the minimal spectrum efficiency (SE) or maximize the overall SE to cope with severe interference based on the successive convex approximation (SCA) principle. One of the challenges is that a UAV can affect a large area meaning that many more UAV-UEs must be considered in the optimization problem, which is essentially different from that for terrestrial UEs. The necessity of single-carrier uplink transmission further complicates the problem. Nevertheless, we find that the special property of large coherent bandwidths and coherent times of the propagation channels can be leveraged. The performances of the proposed algorithms are evaluated via extensive simulations in the full-buffer transmission mode and bursty-traffic mode. Results show that the proposed algorithms can effectively enhance the uplink SEs. This work can be considered the first attempt to deal with the interference among massive cellular-connected UAV-UEs with optimized power allocations

    Power Allocation for Uplink Communications of Massive Cellular-Connected UAVs

    Get PDF
    Cellular-connected unmanned aerial vehicle (UAV) has attracted a surge of research interest in both academia and industry. To support aerial user equipment (UEs) in the existing cellular networks, one promising approach is to assign a portion of the system bandwidth exclusively to the UAV-UEs. This is especially favorable for use cases where a large number of UAV-UEs are exploited, e.g., for package delivery close to a warehouse. Although the nearly line-of-sight (LoS) channels can result in higher powers received, UAVs can in turn cause severe interference to each other in the same frequency band. In this contribution, we focus on the uplink communications of massive cellular-connected UAVs. Different power allocation algorithms are proposed to either maximize the minimal spectrum efficiency (SE) or maximize the overall SE to cope with severe interference based on the successive convex approximation (SCA) principle. One of the challenges is that a UAV can affect a large area meaning that many more UAV-UEs must be considered in the optimization problem, which is essentially different from that for terrestrial UEs. The necessity of single-carrier uplink transmission further complicates the problem. Nevertheless, we find that the special property of large coherent bandwidths and coherent times of the propagation channels can be leveraged. The performances of the proposed algorithms are evaluated via extensive simulations in the full-buffer transmission mode and bursty-traffic mode. Results show that the proposed algorithms can effectively enhance the uplink SEs. This work can be considered the first attempt to deal with the interference among massive cellular-connected UAV-UEs with optimized power allocations

    Altered fibroblast proteoglycan production in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway remodeling in COPD includes reorganization of the extracellular matrix. Proteoglycans play a crucial role in this process as regulators of the integrity of the extracellular matrix. Altered proteoglycan immunostaining has been demonstrated in COPD lungs and this has been suggested to contribute to the pathogenesis. The major cell type responsible for production and maintenance of ECM constituents, such as proteoglycans, are fibroblasts. Interestingly, it has been proposed that central airways and alveolar lung parenchyma contain distinct fibroblast populations. This study explores the hypothesis that altered depositions of proteoglycans in COPD lungs, and in particular versican and perlecan, is a result of dysregulated fibroblast proteoglycan production.</p> <p>Methods</p> <p>Proliferation, proteoglycan production and the response to TGF-β<sub>1 </sub>were examined <it>in vitro </it>in centrally and distally derived fibroblasts isolated from COPD patients (GOLD stage IV) and from control subjects.</p> <p>Results</p> <p>Phenotypically different fibroblast populations were identified in central airways and in the lung parenchyma. Versican production was higher in distal fibroblasts from COPD patients than from control subjects (p < 0.01). In addition, perlecan production was lower in centrally derived fibroblasts from COPD patients than from control subjects (p < 0.01). TGF-β<sub>1 </sub>triggered similar increases in proteoglycan production in distally derived fibroblasts from COPD patients and control subjects. In contrast, centrally derived fibroblasts from COPD patients were less responsive to TGF-β<sub>1 </sub>than those from control subjects.</p> <p>Conclusions</p> <p>The results show that fibroblasts from COPD patients have alterations in proteoglycan production that may contribute to disease development. Distally derived fibroblasts from COPD patients have enhanced production of versican that may have a negative influence on the elastic recoil. In addition, a lower perlecan production in centrally derived fibroblasts from COPD patients may indicate alterations in bronchial basement membrane integrity in severe COPD.</p

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Functional and phenotypical comparison of myofibroblasts derived from biopsies and bronchoalveolar lavage in mild asthma and scleroderma

    Get PDF
    BACKGROUND: Activated fibroblasts, which have previously been obtained from bronchoalveolar lavage fluid (BALF), are proposed to be important cells in the fibrotic processes of asthma and scleroderma (SSc). We have studied the motility for BALF derived fibroblasts in patients with SSc that may explain the presence of these cells in the airway lumen. Furthermore, we have compared phenotypic alterations in activated fibroblasts from BALF and bronchial biopsies from patients with mild asthma and SSc that may account for the distinct fibrotic responses. METHODS: Fibroblasts were cultured from BALF and bronchial biopsies from patients with mild asthma and SSc. The motility was studied using a cell migration assay. Western Blotting was used to study the expression of alpha-smooth muscle actin (α-SMA), ED-A fibronectin, and serine arginine splicing factor 20 (SRp20). The protein expression pattern was analyzed to reveal potential biomarkers using two-dimensional electrophoresis (2-DE) and sequencing dual matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF). The Mann-Whitney method was used to calculate statistical significance. RESULTS: Increased migration and levels of ED-A fibronectin were observed in BALF fibroblasts from both groups of patients, supported by increased expression of RhoA, Rac1, and the splicing factor SRp20. However, these observations were exclusively accompanied by increased expression of α-SMA in patients with mild asthma. Compared to BALF fibroblasts in mild asthma, fibroblasts in SSc displayed a differential protein expression pattern of cytoskeletal- and scavenger proteins. These identified proteins facilitate cell migration, oxidative stress, and the excessive deposition of extracellular matrix observed in patients with SSc. CONCLUSION: This study demonstrates a possible origin for fibroblasts in the airway lumen in patients with SSc and important differences between fibroblast phenotypes in mild asthma and SSc. The findings may explain the distinct fibrotic processes and highlight the motile BALF fibroblast as a potential target cell in these disorders

    Associations of airway inflammation and responsiveness markers in non asthmatic subjects at start of apprenticeship

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bronchial Hyperresponsiveness (BHR) is considered a hallmark of asthma. Other methods are helpful in epidemiological respiratory health studies including Fractional Exhaled Nitric Oxide (FENO) and Eosinophils Percentage (EP) in nasal lavage fluid measuring markers for airway inflammation along with the Forced Oscillatory Technique measuring Airway resistance (AR). Can their outcomes discriminate profiles of respiratory health in healthy subjects starting apprenticeship in occupations with a risk of asthma?</p> <p>Methods</p> <p>Rhinoconjunctivitis, asthma-like symptoms, FEV1 and AR post-Methacholine Bronchial Challenge (MBC) test results, FENO measurements and EP were all investigated in apprentice bakers, pastry-makers and hairdressers not suffering from asthma. Multiple Correspondence Analysis (MCA) was simultaneously conducted in relation to these groups and this generated a synthetic partition (EI). Associations between groups of subjects based on BHR and EI respectively, as well as risk factors, symptoms and investigations were also assessed.</p> <p>Results</p> <p>Among the 441 apprentice subjects, 45 (10%) declared rhinoconjunctivitis-like symptoms, 18 (4%) declared asthma-like symptoms and 26 (6%) suffered from BHR. The mean increase in AR post-MBC test was 21% (sd = 20.8%). The median of FENO values was 12.6 ppb (2.6-132 range). Twenty-six subjects (6.7%) had EP exceeding 14%. BHR was associated with atopy (p < 0.01) and highest FENO values (p = 0.09). EI identified 39 subjects with eosinophilic inflammation (highest values of FENO and eosinophils), which was associated with BHR and atopy.</p> <p>Conclusions</p> <p>Are any of the identified markers predictive of increased inflammatory responsiveness or of development of symptoms caused by occupational exposures? Analysis of population follow-up will attempt to answer this question.</p

    Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The collection of exhaled breath condensate (EBC) is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments.</p> <p>Methods</p> <p>EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB<sub>4</sub>, PGE<sub>2</sub>, 8-isoprostane and cys-LTs were determined.</p> <p>Results</p> <p>EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB<sub>4 </sub>and PGE<sub>2</sub>) or showed higher concentrations (8-isoprostane). However, NOx was detected only in EBC sampled by ECoScreen.</p> <p>Conclusion</p> <p>ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.</p
    corecore