724 research outputs found

    The Nontraditional Community College Student: A Phenomenological Approach to the Educational Experience

    Get PDF
    Nontraditional students make up a larger population at community colleges than their traditional counterparts making this study a necessity to further explore their experience (American Association of Community Colleges, 2013). To better understand this population, a phenomenological approach was taken with an emphasis on a social constructivism framework. This qualitative study utilized Seidman\u27s (2013) three step interviewing process with the aid of photographs taken by the participants to elicit in-depth interview responses. Moustakas\u27 (1994) modified Stevick-Colaizzi-Keen Method of Analysis of Phenomenological Data was used in this study. Four themes emerged from participant\u27s photographs and interviews: motivation, helpful faculty/staff, external responsibilities, and past educational experiences. Looking through the lens of an individual\u27s educational experience provides a critical understanding of realities that can potentially impact policy

    The influence of modes of climate variability on the sub-seasonal temporal clustering of extreme precipitation.

    Get PDF
    Temporally clustered precipitation extremes can have catastrophic impacts. Therefore, understanding their drivers is paramount for risk assessment in current and future climates. Here, we model for each season 3-week extreme precipitation event counts with Poisson Generalized Linear Models and nine major modes of climate variability as covariates. Model goodness-of-fit is highest in the tropics, particularly over the equatorial Pacific, the Maritime Continent, and East Africa, where ENSO, the Indian Ocean Dipole (IOD) and the MJO are the major drivers of sub-seasonal temporal clustering of extreme precipitation. The IOD and MJO also matter over Southwest Asia during boreal fall and winter. In the Northern Hemisphere, the North Atlantic Oscillation impacts clustering west of the Iberian Peninsula and over Scandinavia and Greenland, and the Pacific North American pattern matters over the central/northern Pacific Ocean. Finally, our models show very little skill in the Southern Hemisphere, where temporal clustering is also less frequent

    A global perspective on the sub-seasonal clustering of precipitation extremes

    Get PDF
    The occurrence of several precipitation extremes over sub-seasonal time windows can have major impacts on human societies, leading for instance to floods. Here, we apply a simple statistical framework based on Ripley’s K function, at a global scale and for each season separately, to identify regions where precipitation extremes tend to cluster in time over timescales of a few days to a few weeks. We analyze several observational and reanalysis datasets, as well as output from CMIP6 Global Climate Models (GCMs). Good agreement is found on the spatio-temporal clustering patterns across datasets. Sub-seasonal temporal clustering is largely concentrated over the tropical oceans, where it can be detected year-round. It is also significant over certain tropical lands, like Eastern Africa, and seasonally outside the tropics in several regions, most notably around the eastern subtropical oceans (Iberian Peninsula and Western North America during the DJF and MAM seasons) Southwest Asia (especially during JJA and SON) and Australia (in SON). We also find that CMIP6 models generally correctly reproduce clustering patterns, paving the way for an assessment of trends in sub-seasonal clustering under climate change. Clustering of present-day extremes increases in many areas under climate change. Changes diagnosed by comparing present day and future extreme percentiles are positive and negative and strongest in the tropical areas

    Weather persistence on sub-seasonal to seasonal timescales: a methodological review

    Get PDF
    Persistence is an important concept in meteorology. It refers to surface weather or the atmospheric circulation either remaining in approximately the same state (quasi-stationarity) or repeatedly occupying the same state (recurrence) over some prolonged period of time. Persistence can be found at many different timescales; however, sub-seasonal to seasonal (S2S) timescales are especially relevant in terms of impacts and atmospheric predictability. For these reasons, S2S persistence has been attracting increasing attention from the scientific community. The dynamics responsible for persistence and their potential evolution under climate change are a notable focus of active research. However, one important challenge facing the community is how to define persistence from both a qualitative and quantitative perspective. Despite a general agreement on the concept, many different definitions and perspectives have been proposed over the years, among which it is not always easy to find one's way. The purpose of this review is to present and discuss existing concepts of weather persistence, associated methodologies and physical interpretations. In particular, we call attention to the fact that persistence can be defined as a global or as a local property of a system, with important implications in terms of methods and impacts. We also highlight the importance of timescale and similarity metric selection and illustrate some of the concepts using the example of summertime atmospheric circulation over western Europe

    Subseasonal Temporal Clustering of Extreme Precipitation in the Northern Hemisphere: Regionalization and Physical Drivers

    Get PDF
    Temporal clustering of extreme precipitation (TCEP) at subseasonal time scales often results in major impactson humans and ecosystems. Assessment and mitigation of the risk of such events requires characterization of their weather/climate drivers and their spatial dependence. Here, we introduce a regionalization method that identifies coherent regions in which the likelihood of subseasonal TCEP exhibits similar dependence to large-scale dynamics. We apply this method to each season in the Northern Hemisphere using ERA5 reanalysis data. The analysis yields spatially coherent regions, primarily at high latitudes and along the eastern margins of ocean basins. We analyze the large-scale and synoptic conditions associated with TCEP in several of the identified regions, in light of three key ingredients: lifting, moisture availability, and persistence in synoptic conditions. We find that TCEP is often directly related to distinct cyclone and blocking frequency anomalies and upper-level wave patterns. Blocking and associated Rossby wave breaking are particularly relevant at high latitudes and midlatitudes. At upper levels, meridional wave patterns dominate; however, in western Europe and parts of North America, TCEP is sometimes associated with zonally extended wave patterns. The flow features associated with TCEP in the eastern Pacific and eastern Atlantic Oceans exhibit similarities. For some regions, moisture flux anomalies are present during clustering episodes whereas in others forced lifting alone is sufficient to trigger heavy precipitation. Our results provide new information on the dynamics and spatial dependence of TCEP that may be relevant for the subseasonal prediction of clustering episodes

    Weather persistence on sub-seasonal to seasonal timescales: a methodological review

    Get PDF
    Persistence is an important concept in meteorology. It refers to surface weather or the atmospheric circulation either remaining in approximately the same state (stationarity) or repeatedly occupying the same state (recurrence) over some prolonged period of time. Persistence can be found at many different timescales; however, the sub-seasonal to seasonal (S2S) timescale is especially relevant in terms of impacts and atmospheric predictability. For these reasons, S2S persistence has been attracting increasing attention by the scientific community. The dynamics responsible for persistence and their potential evolution under climate change are a notable focus of active research. However, one important challenge facing the community is how to define persistence, from both a qualitative and quantitative perspective. Despite a general agreement on the concept, many different definitions and perspectives have been proposed over the years, among which it is not always easy to find one’s way. The purpose of this review is to present and discuss existing concepts of weather persistence, associated methodologies and physical interpretations. In particular, we call attention to the fact that persistence can be defined as a global or as a local property of a system, with important implications in terms of methods but also impacts. We also highlight the importance of timescale and similarity metric selection, and illustrate some of the concepts using the example of summertime atmospheric circulation over Western Europ

    A climatology of sub-seasonal temporal clustering of extreme precipitation in Switzerland and its links to extreme discharge

    Get PDF
    The successive occurrence of extreme precipitation events on a sub-seasonal time-scale can lead to large precipitation accumulations, a classic trigger of flood events. Here we analyse sub-seasonal clustering in Switzerland, first characterizing the tendency of precipitation extremes to cluster in time for each season separately, and second, linking the occurrence of persistent flood events to sub-seasonal clusters of precipitation extremes. We find a distinct spatio-temporal pattern in temporal clustering behavior of precipitation extremes, with temporal clustering occurring on the northern side of the Alps in winter, and on their southern side in fall. In winter, the magnitude of precipitation extremes is generally lower, and much of the precipitation falls as snow, therefore temporal clusters contribute little to the occurrence of persistent flood events. In fall, however, temporal clusters associated with large precipitation accumulations over the southern Alps are found to be almost systematically followed by floods. In addition, discharge magnitudes decrease more slowly after clustered extremes

    On the persistence of warm and cold spells in the Northern Hemisphere extratropics: regionalisation, synoptic-scale dynamics, and temperature budget

    Get PDF
    Persistent warm and cold spells are often high-impact events that may lead to significant increases in mortality and crop damage, and can put substantial pressure on the power grid. Their spatial extent is seldom taken into account, or only based on case studies. Yet, the spatial dependence in prolonged warm or cold anomalies is critical to correctly understand the associated risks, whether in present-day or future climates. Here, we present a regionalisation of 3-week warm and cold spells in winter and summer across the Northern Hemisphere based on their sensitivity to the large-scale circulation. We identify spatially coherent regions and discuss the physical drivers responsible for persistent extreme temperature anomalies. Blocks are important precursors of such events – co-localized blocks for persistent summer warm spells and upstream blocks for winter cold spells. Recurrent Rossby wave patterns are also relevant for many mid-latitude regions. Additionally, summer warm spells are – unsurprisingly – often accompanied by negative precipitation anomalies that likely play an important role through land-atmosphere feedback

    On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe

    Get PDF
    River discharge is impacted by the sub-seasonal (weekly to monthly) temporal structure of precipitation. One example is the successive occurrence of extreme precipitation events over sub-seasonal timescales, referred to as temporal clustering. Its potential effects on discharge have received little attention. Here, we address this topic by analysing discharge observations following extreme precipitation events either clustered in time or occurring in isolation. We rely on two sets of precipitation and discharge data, one centred on Switzerland and the other over Europe. We identify “clustered” extreme precipitation events based on the previous occurrence of another extreme precipitation within a given time window. We find that clustered events are generally followed by a more prolonged discharge response with a larger amplitude. The probability of exceeding the 95th discharge percentile in 5 d following an extreme precipitation event is in particular up to twice as high for situations where another extreme precipitation event occurred in the preceding week compared to isolated extreme precipitation events. The influence of temporal clustering on discharge decreases as the clustering window increases; beyond 6–8 weeks the difference in discharge response with non-clustered events is negligible. Catchment area, streamflow regime and precipitation magnitude also modulate the response. The impact of clustering is generally smaller in snow-dominated and large catchments. Additionally, particularly persistent periods of high discharge tend to occur in conjunction with temporal clusters of precipitation extremes
    • …
    corecore