12 research outputs found

    Organization and Nucleotide Sequence of the Human Hermansky-Pudlak Syndrome (HPS) Gene

    Get PDF
    Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by oculocutaneous albinism, bleeding tendency, and lysosomal ceroid storage disease, associated with defects of multiple cytoplasmic organelles-melanosomes, platelet-dense granules, and lysosomes. HPS is frequently fatal and is the most common single-gene disorder in Puerto Rico. We previously characterized the human HPS cDNA and identified pathologic mutations in the gene in patients with HPS. The HPS protein is a novel apparent transmembrane polypeptide that seems to be crucial for normal organellar development. Here we describe the structural organization, nucleotide sequence, and polymorphisms of the human HPS gene. The gene consists of 20 exons spanning about 30.5kb in chromosome segment l0q23.1-q23.3. One of the intervening sequences is a member of the novel, very rare class of so-called “AT-AC” introns, defined by highly atypical 5' and 3' splice site and branch site consensus sequences that provide novel targets for possible pathologic gene mutations. This information provides the basis for molecular analyses of patients with HPS and will greatly facilitate diagnosis and carrier detection of this severe disorder

    Characterization of antibodies elicited by XMRV infection and development of immunoassays useful for epidemiologic studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xenotropic Murine Leukemia Virus-related Virus (XMRV) is a human gammaretrovirus recently identified in prostate cancer tissue and in lymphocytes of patients with chronic fatigue syndrome. To establish the etiologic role of XMRV infection in human disease requires large scale epidemiologic studies. Development of assays to detect XMRV-specific antibodies would greatly facilitate such studies. However, the nature and kinetics of the antibody response to XMRV infection have yet to be determined.</p> <p>Results</p> <p>Three rhesus macaques were infected with XMRV to determine the dynamics of the antibody responses elicited by infection with XMRV. All macaques developed antibodies to XMRV during the second week of infection, and the predominant responses were to the envelope protein gp70, transmembrane protein p15E, and capsid protein p30. In general, antibody responses to gp70 and p15E appeared early with higher titers than to p30, especially in the early period of seroconversion. Antibodies to gp70, p15E and p30 persisted to 158 days and were substantially boosted by re-infection, thus, were identified as useful serologic markers. Three high-throughput prototype assays were developed using recombinant proteins to detect antibodies to these viral proteins. Both gp70 and p15E prototype assays demonstrated 100% sensitivity by detecting all Western blot (WB) positive serial bleeds from the XMRV-infected macaques and good specificity (99.5-99.9%) with blood donors. Seroconversion sensitivity and specificity of the p30 prototype assay were 92% and 99.4% respectively.</p> <p>Conclusions</p> <p>This study provides the first demonstration of seroconversion patterns elicited by XMRV infection. The nature and kinetics of antibody responses to XMRV in primates were fully characterized. Moreover, key serologic markers useful for detection of XMRV infection were identified. Three prototype immunoassays were developed to detect XMRV-specific antibodies. These assays demonstrated good sensitivity and specificity; thus, they will facilitate large scale epidemiologic studies of XMRV infection in humans.</p

    Long-range and short-range dihadron angular correlations in central PbPb collisions at √sNN=2.76 TeV

    Get PDF
    This is the pre-print version of the Published Article, which can be accessed from the link below.First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76TeV over a broad range in relative pseudorapidity ( ) and the full range of relative azimuthal angle ( ). The data were collected with the CMS detector, at the LHC. A broadening of the away-side ( ) azimuthal correlation is observed at all , as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in are observed for particles with similar values. This phenomenon, also known as the \ridge", persists up to at least j j = 4. For particles with transverse momenta (pT) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pT = 2-6 GeV/c, and to be much reduced when paired with particles of pT = 10-12 GeV/c

    Search for a WbosondecayingtoamuonandaneutrinoinW^ boson decaying to a muon and a neutrino in ppcollisionsat collisions at s = 7$ TeV

    Get PDF
    A new heavy gauge boson, W′, decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass energy of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 pb−1. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon–neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like W′. The W′ mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channe

    Generation and Characterization of Chimeric Antibodies against NS3, NS4, NS5, and Core Antigens of Hepatitis C Virus ▿

    No full text
    Mouse-human chimeric antibodies (cAbs) against hepatitis C virus (HCV) core, NS3 (nonstructural), NS4, and NS5 antigens were developed as quality control (QC) reagents to replace the use of human sera/plasma for Abbott HCV immunoassays. The cAb retains the mouse monoclonal antibody (MAb) specificity and affinity but still reacts in the existing HCV assay format, which measures human anti-HCV immunoglobulin. Mouse heavy-chain (VH) and light-chain (VL) variable regions of anti-HCV core, NS3, NS4, and NS5 antigens were PCR amplified from hybridoma lines and then cloned with human IgG1 heavy-chain (CH) and light-chain (CL) constant regions, respectively. A single mammalian expression plasmid containing both heavy-chain and light-chain immunoglobulin genes was constructed and transfected into dihydrofolate reductase (DHFR)-deficient Chinese hamster ovary (CHO) cells. The transfected CHO cells were selected using hypoxanthine- and thymidine-free medium and screened by an enzyme immunoassay (EIA). The clone secreting the highest level of antibody was isolated from the CHO transfectants and further subcloned. Each cAb-expressing CHO cell line was weaned into serum-free medium, and the cAb was purified by protein A affinity chromatography. The levels of cAb production for the various CHO cell lines varied from 10 to 20 mg/liter. Purified anti-HCV cAbs were tested with Abbott HCV immunoassays and showed reactivity. Moreover, yeast surface display combined with alanine-scanning mutagenesis was used to map the epitope at the individual amino acid level. Our results suggest that these HCV cAbs are ideal controls, calibrators, and/or QC reagents for HCV assay standardization
    corecore