97 research outputs found

    Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses.

    Get PDF
    The conserved hemagglutinin (HA) stem has been a focus of universal influenza vaccine efforts. Influenza A group 1 HA stem-nanoparticles have been demonstrated to confer heterosubtypic protection in animals; however, the protection does not extend to group 2 viruses, due in part to differences in glycosylation between group 1 and 2 stems. Here, we show that introducing the group 2 glycan at Asn38 to a group 1 stem-nanoparticle (gN38 variant) based on A/New Caledonia/20/99 (H1N1) broadens antibody responses to cross-react with group 2 HAs. Immunoglobulins elicited by the gN38 variant provide complete protection against group 2 H7N9 virus infection, while the variant loses protection against a group 1 H5N1 virus. The N38 glycan thus is pivotal in directing antibody responses by controlling access to group-determining stem epitopes. Precise targeting of stem-directed antibody responses to the site of vulnerability by glycan repositioning may be a step towards achieving cross-group influenza protection.We thank D. Scorpio, A. Taylor, H. Bao, C. Chiedi, M. Dillon, L. Gilliam, and G. Sarbador (VRC) for help with animal studies; H. Andersen (Bioqual, Inc.) for mouse challenge studies; C. Case (Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc.) for help with challenge study coordination; A. Kumar (VRC) for producing RSV proteins; and members of Viral Pathogenesis Laboratory and Universal Influenza Vaccine Program (VRC) for helpful discussion. Support for this work was provided by the Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Electron microscopy data collection and analyses were funded by federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract number HHSN261200800001E, and by Leidos Biomedical Research, Inc. (Y.T. and T.S.)

    A Potent and Broad Neutralization of SARS-Cov-2 Variants of Concern by DARpins

    Get PDF
    We report the engineering and selection of two synthetic proteins-FSR16m and FSR22-for the possible treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. FSR16m and FSR22 are trimeric proteins composed of DARPin SR16m or SR22 fused with a T4 foldon. Despite selection by a spike protein from a now historical SARS-CoV-2 strain, FSR16m and FSR22 exhibit broad-spectrum neutralization of SARS-CoV-2 strains, inhibiting authentic B.1.351, B.1.617.2 and BA.1.1 viruses, with respective I

    Ultrapotent Broadly Neutralizing Human-llama Bispecific Antibodies against HIV-1

    Get PDF
    Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV‐1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion‐stabilized HIV‐1 envelope (Env) trimer, BG505 DS‐SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4‐binding site (CD4bs) of vulnerability. Two of the vaccine‐elicited CD4bs‐targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a‐hinge region and human IgG1‐constant region (G36×3‐IgG2a and R27×3‐IgG2a), neutralized 96% of a multiclade 208‐strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL−1, respectively. Cryo‐EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV‐1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2‐apex‐targeting broadly neutralizing antibody, CAP256V2LS. The resultant human‐llama bispecific antibody CAP256L‐R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV‐1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn‐Fc mice similar to the parent CAP256V2LS. Vaccine‐elicited llama nanobodies, when combined with V2‐apex broadly neutralizing antibodies, may therefore be able to fulfill anti‐HIV‐1 therapeutic and prophylactic clinical goals

    Diverse Murine Vaccinations Reveal Distinct Antibody Classes to Target Fusion Peptide and Variation in Peptide Length to Improve HIV Neutralization

    Get PDF
    While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability

    Protection of calves by a prefusion-stabilized bovine RSV F vaccine

    Get PDF
    Bovine respiratory syncytial virus, a major cause of respiratory disease in calves, is closely related to human RSV, a leading cause of respiratory disease in infants. Recently, promising human RSV-vaccine candidates have been engineered that stabilize the metastable fusion (F) glycoprotein in its prefusion state; however, the absence of a relevant animal model for human RSV has complicated assessment of these vaccine candidates. Here, we use a combination of structure-based design, antigenic characterization, and X-ray crystallography to translate human RSV F stabilization into the bovine context. A “DS2” version of bovine respiratory syncytial virus F with subunits covalently fused, fusion peptide removed, and pre-fusion conformation stabilized by cavity-filling mutations and intra- and inter-protomer disulfides was recognized by pre-fusion- specific antibodies, AM14, D25, and MPE8, and elicited bovine respiratory syncytial virus- neutralizing titers in calves >100-fold higher than those elicited by post-fusion F. When challenged with a heterologous bovine respiratory syncytial virus, virus was not detected in nasal secretions nor in respiratory tract samples of DS2-immunized calves; by contrast bovine respiratory syncytial virus was detected in all post-fusion- and placebo-immunized calves. Our results demonstrate proof-of-concept that DS2-stabilized RSV F immunogens can induce highly protective immunity from RSV in a native host with implications for the efficacy of prefusion- stabilized F vaccines in humans and for the prevention of bovine respiratory syncytial virus in calves

    Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages.

    Get PDF
    Influenza vaccines targeting the highly conserved stem of the hemagglutinin (HA) surface glycoprotein have the potential to protect against pandemic and drifted seasonal influenza viruses not covered by current vaccines. While HA stem-based immunogens derived from group 1 influenza A viruses have been shown to induce intragroup heterosubtypic protection, HA stem-specific antibody lineages originating from group 2 may be more likely to possess broad cross-group reactivity. We report the structure-guided development of mammalian-cell-expressed candidate vaccine immunogens based on influenza A virus group 2 H3 and H7 HA stem trimers displayed on self-assembling ferritin nanoparticles using an iterative, multipronged approach involving helix stabilization, loop optimization, disulfide bond addition, and side-chain repacking. These immunogens were thermostable, formed uniform and symmetric nanoparticles, were recognized by cross-group-reactive broadly neutralizing antibodies (bNAbs) with nanomolar affinity, and elicited protective, homosubtypic antibodies in mice. Importantly, several immunogens were able to activate B cells expressing inferred unmutated common ancestor (UCA) versions of cross-group-reactive human bNAbs from two multidonor classes, suggesting they could initiate elicitation of these bNAbs in humans. Current influenza vaccines are primarily strain specific, requiring annual updates, and offer minimal protection against drifted seasonal or pandemic strains. The highly conserved stem region of hemagglutinin (HA) of group 2 influenza A virus subtypes is a promising target for vaccine elicitation of broad cross-group protection against divergent strains. We used structure-guided protein engineering employing multiple protein stabilization methods simultaneously to develop group 2 HA stem-based candidate influenza A virus immunogens displayed as trimers on self-assembling nanoparticles. Characterization of antigenicity, thermostability, and particle formation confirmed structural integrity. Group 2 HA stem antigen designs were identified that, when displayed on ferritin nanoparticles, activated B cells expressing inferred unmutated common ancestor (UCA) versions of human antibody lineages associated with cross-group-reactive, broadly neutralizing antibodies (bNAbs). Immunization of mice led to protection against a lethal homosubtypic influenza virus challenge. These candidate vaccines are now being manufactured for clinical evaluation

    Structural Insights into the Drosophila melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family.

    No full text
    The 11-cis-retinylidene chromophore of visual pigments isomerizes upon interaction with a photon, initiating a downstream cascade of signaling events that ultimately lead to visual perception. 11-cis-Retinylidene is regenerated through enzymatic transformations collectively called the visual cycle. The first and rate-limiting enzymatic reaction within this cycle, i.e., the reduction of all-trans-retinal to all-trans-retinol, is catalyzed by retinol dehydrogenases. Here, we determined the structure of Drosophila melanogaster photoreceptor retinol dehydrogenase (PDH) isoform C that belongs to the short-chain dehydrogenase/reductase (SDR) family. This is the first reported structure of a SDR that possesses this biologically important activity. Two crystal structures of the same enzyme grown under different conditions revealed a novel conformational change of the NAD+ cofactor, likely representing a change during catalysis. Amide hydrogen-deuterium exchange of PDH demonstrated changes in the structure of the enzyme upon dinucleotide binding. In D. melanogaster, loss of PDH activity leads to photoreceptor degeneration that can be partially rescued by transgenic expression of human RDH12. Based on the structure of PDH, we analyzed mutations causing Leber congenital amaurosis 13 in a homology model of human RDH12 to obtain insights into the molecular basis of RDH12 disease-causing mutations
    corecore