9 research outputs found
HEPPA-II model-measurement intercomparison project : EPP indirect effects during the dynamically perturbed NH winter 2008-2009
We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx D NO+NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMO-NIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NO x tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05-0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with mediumtop models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of- the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.Peer reviewe
HEPPA-II modelâmeasurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009
We compare simulations from three high-top (with upper lid above 120âŻkm) and five medium-top (with upper lid around 80âŻkm) atmospheric models with observations of odd nitrogen (NOxâŻâ=ââŻNOâŻ+âŻNO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20âŻ%. Larger discrepancies of a few model simulations could be traced back either to the impact of the models\u27 gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In MarchâApril, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2â0.05âŻhPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05â0.001âŻhPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions
Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential
Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.Peer reviewe
Two Rye Genes Responsible for Abnormal Development of WheatâRye Hybrids Are Linked in the Vicinity of an Evolutionary Translocation on Chromosome 6R
The post-zygotic reproductive isolation (RI) in plants is frequently based on the negative interaction of the parental genes involved in plant development. Of special interest is the study of such types of interactions in crop plants, because of the importance of distant hybridization in plant breeding. This study is devoted to map rye genes that are incompatible with wheat, determining the development of the shoot apical meristem in wheat–rye hybrids. Linkage analysis of microsatellite loci, as well as genes of embryo lethality (Eml-R1) and hybrid dwarfness (Hdw-R1) was carried out in hybrids of Chinese Spring wheat with recombinant inbred lines as well as interline rye hybrids. Eml-R1 and Hdw-R1 could be mapped proximal and distal of two closely linked EST-SSR markers, Xgrm902 and Xgrm959, on rye chromosome 6R. Both rye genes are located on a segment of chromosome 6R that contains a breakpoint of evolutionary translocation between the ancestral chromosomes of homeologous groups 6 and 3. The obtained results are discussed in relation to genes interacting in developmental pathways as a class of causal genes of RI
Beta-Hydroxybutyrate Mitigates Sensorimotor and Cognitive Impairments in a Photothrombosis-Induced Ischemic Stroke in Mice
The consequences of stroke include cognitive deficits and sensorimotor disturbances, which are largely related to mitochondrial impairments in the brain. In this work, we have shown that the mimetic of the ketogenic diet beta-hydroxybutyrate (βHB) can improve neurological brain function in stroke. At 3 weeks after photothrombotic stroke, mice receiving βHB with drinking water before and after surgery recovered faster in terms of sensorimotor functions assessed by the string test and static rods and cognitive functions assessed by the Morris water maze. At the same time, the βHB-treated mice had lower expression of some markers of astrocyte activation and inflammation (Gfap, Il-1b, Tnf). We hypothesize that long-term administration of βHB promotes the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway, which leads to increased expression of antioxidant genes targeting mitochondria and genes involved in signaling pathways necessary for the maintenance of synaptic plasticity. βHB partially maintained mitochondrial DNA (mtDNA) integrity during the first days after photothrombosis. However, in the following three weeks, the number of mtDNA damages increased in all experimental groups, which coincided with a decrease in Ogg1 expression, which plays an important role in mtDNA repair. Thus, we can assume that βHB is not only an important metabolite that provides additional energy to brain tissue during recovery from stroke under conditions of mitochondrial damage but also an important signaling molecule that supports neuronal plasticity and reduces neuroinflammation
HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008/2009
We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx = NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3d Chemistry Transport model (3dCTM), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model,
FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modeling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20%. Larger discrepancies of a few model simulations could be traced back either to the impact of the modelsâ gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In MarchâApril, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a
temperature high bias in the lower mesosphere (0.2â0.05 hPa) being likely caused by an overestimation of descent velocities. On the other hand, upper mesospheric temperatures (at 0.05â0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too slow descent and hence too low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.ISSN:1680-7375ISSN:1680-736
Abstracts Of The Proceedings And The Posters From The Third Scientific Session Of The Medical College Of Varna
October 2-3, 201
The Institutional Foundations of the Digital Economy in the 21st Century/ Elena G. Popkova, Artem Krivtsov, Aleksei V. Bogoviz.
In English.The development of the Digital Economy has been a landmark breakthrough for economic systems in the 21st century, as it opens up opportunities for the full-scale implementation of new digital technologies and the optimization of economic activities. While the conceptual essence and specific features of the digital economy are described in detail in the existing literature, the practical foundations of its formation are poorly studied. In this book, the digital economy is studied from the perspective of neo-institutional economic theory. This allows for the tracking of the process of formation (institutionalization) of the digital economy, determining the basic institutions that are necessary for its formation and that exist in modern economic practice, and analyzing scenarios for the future development of the digital economy in the 21st century.Frontmatter -- Contents -- Digital Economy in the 21 Century: An Introduction to the Institutional Approach -- Part I: The Scientific Concept of the Digital Economy in the 21st Century -- 1 Digital Economy as a Modern Type of Economic System -- 2 âDigitalizationâ- Overcoming Institutional Barriers -- 3 Development of the Information Technologies Sector in Latvia under Globalization -- 4 The Principles of Functioning and Priorities of Development of the Digital Economy -- 5 Classification of Breakthrough Digital Technologies and the Perspectives of Their Application in Economy -- Part II: The Process of Digital Economy Institutionalization in the 21st Century -- 6 The Essence and Logic of the Process of Sectorial Markets' Digital Transformation -- 7 The Current Tendencies of Economy Digitalization in Developed and Developing Countries -- 8 The Main Stages of the Digital Modernization of Economy -- 9 Implementation of Cluster Initiatives in the Digital Sphere as a Tool of Digital Entrepreneurship's Institutionalization -- 10 Institutions of Support for Digital Entrepreneurship: Special Economic Zones, Innovative Networks and Technological Parks -- Part III: Meso-Level Institutions of the Digital Economy in the 21st Century -- 11 Digitalization of Regional Economy: Problems and Perspectives -- 12 The Institutional Model of the Digital Economy Creation in a Modern Region -- 13 Managing a Modern Region Based on Digital Technologies -- Part IV: Macro-Level Institutions of the Digital Economy in the 21st Century -- 14 State Institutional Regulation of Economy Digital Modernization -- 15 The Role of Financial Institutions in Supporting the Digital Economy -- 16 Digital Economy of the 21st Century: A View from the Positions of Developed and Developing Countries -- Part V: The Global Institutions of the Digital Economy in the 21st Century -- 17 International Trade in the Digital Sphere: Barriers and Prospects for Development -- 18 The Existing and Perspective International Institutions for Supporting Digital Transformation of Economy -- 19 The Scientific and Methodological Approach to Provision and Evaluation of the Digital Economy's Global Competitiveness -- 20 The Strategy of Optimal Development of the Digital Economy: A View from the Positions of Game Theory -- 21 The Institutional Model of Well-Balanced and Sustainable Digital Economy -- 22 The Institutional Mechanism of Managing the Digital Economy's Development -- Part VI: Case Studies of Institutions of the Digital Economy in the 21st Century -- 23 Problems and Prospects of Economic Cooperation Between Russia and Mexico -- 24 Innovative Critical Success Factors for Public - Private Partnerships (PPP) in Infrastructure Projects of Developing Countries. A Case of Zambia -- 25 Prediction Mechanism of the Territorial Socio-Economic Processes in Formation of the Information Systems -- 26 Specific Economic Security Regulations in the Context of Pathological Crises of Digital Transformation of Agricultural Organizations -- Conclusion: Institutional Perspectives of the Digital Economy's Development in the 21st Century -- List of Figures -- List of Tables -- Index.1 online resource (XI, 258 p.)