175 research outputs found

    First detection of a Vssc allele V1016G conferring a high level of insecticide resistance in Aedes albopictus collected from Europe (Italy) and Asia (Vietnam), 2016. A new emerging threat to controlling arboviral diseases

    Get PDF
    Introduction Aedes albopictus (Skuse) is an important vector of arboviral diseases, including dengue, chikungunya and Zika virus disease. Monitoring insecticide resistance and mechanisms by which the mosquito develops resistance is crucial to minimise disease transmission. Aim To determine insecticide resistance status and mechanisms in Ae. albopictus from different geographical regions. Methods We sampled 33 populations of Ae. albopictus from Asia, Europe and South America, and tested these for susceptibility to permethrin, a pyrethroid insecticide. In resistant populations, the target site for pyrethroids, a voltage-sensitive sodium channel (Vssc) was genotyped. Three resistant sub-strains, each harbouring a resistance allele homozygously, were established and susceptibilities to three different pyrethroids (with and without a cytochrome P450 inhibitor) were assayed. Results Most populations of Ae. albopictus tested were highly susceptible to permethrin but a few from Italy and Vietnam (4/33), exhibited high-level resistance. Genotyping studies detected a knockdown resistance (kdr) allele V1016G in Vssc for the first time in Ae. albopictus. Two previously reported kdr alleles, F1534C and F1534S, were also detected. The bioassays indicated that the strain homozygous for the V1016G allele showed much greater levels of pyrethroid resistance than other strains harbouring F1534C or F1534S. Conclusion The V1016G allele was detected in bothAsian and Italian Ae. albopictus populations, thus a spread of this allele beyond Italy in Europe cannot be ruled out. This study emphasises the necessity to frequently and regularly monitor the V1016G allele in Ae. albopictus, particularly where this mosquito species is the main vector of arboviruses

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    No significant effect on bone mineral density by high doses of vitamin D3 given to overweight subjects for one year

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In meta-analyses supplementation with vitamin D appears to reduce incidence of fractures, and in cross-sectional studies there is a positive association between serum 25-hydroxyvitamin D (25(OH)D) levels and bone mineral density (BMD). However, the effect of supplementation with high doses of vitamin D on BMD is more uncertain and could in theory have both positive and negative effects.</p> <p>Methods</p> <p>The study was a one year, double blind placebo-controlled intervention trial performed at the University Hospital of North Norway. 421 subjects, 21 - 70 years old, were included and 312 completed the study. The subjects were randomized to vitamin D<sub>3 </sub>40.000 IU per week (DD group), vitamin D<sub>3 </sub>20.000 IU per week (DP group), or placebo (PP group). All subjects were given 500 mg calcium daily. Serum 25(OH)D, osteoprotegrin (OPG), receptoractivator of nuclear factor-kappaB ligand (RANKL), and BMD at the lumbar spine and the hip were measured before and at the end of the study.</p> <p>Results</p> <p>At baseline the mean serum 25(OH)D levels were 58 nmol/L (all subjects) and increased to 141 and 100 nmol/L in the DD and DP groups, respectively. After one year, no significant differences were found between the three groups regarding change in BMD, serum OPG or RANKL.</p> <p>Conclusions</p> <p>Supplementation with high doses of vitamin D for one year does not appear to have a negative effect on BMD in healthy subjects. In order to disclose a positive effect, subjects with low BMD and/or low serum 25(OH)D levels need to be studied.</p> <p>Trial registration</p> <p>The trial was registered at ClinicalTrials.gov (NCT00243256).</p

    Clustered Gene Expression Changes Flank Targeted Gene Loci in Knockout Mice

    Get PDF
    Gene expression profiling using microarrays is a powerful technology widely used to study regulatory networks. Profiling of mRNA levels in mutant organisms has the potential to identify genes regulated by the mutated protein.Using tissues from multiple lines of knockout mice we have examined genome-wide changes in gene expression. We report that a significant proportion of changed genes were found near the targeted gene.The apparent clustering of these genes was explained by the presence of flanking DNA from the parental ES cell. We provide recommendations for the analysis and reporting of microarray data from knockout mice

    Chemoattractant Receptor Homologous to the T Helper 2 Cell (CRTH2) Is Not Expressed in Human Amniocytes and Myocytes

    Get PDF
    BACKGROUND: 15-deoxy-Δ 12,14- Prostaglandin J2 (15dPGJ2) inhibits Nuclear factor kappa B (NF-κB) in human myocytes and amniocytes and delays inflammation induced preterm labour in the mouse. 15dPGJ2 is a ligand for the Chemoattractant Receptor Homologous to the T helper 2 cell (CRTH2), a G protein-coupled receptor, present on a subset of T helper 2 (Th2) cells, eosinophils and basophils. It is the second receptor for Prostaglandin D2, whose activation leads to chemotaxis and the production of Th2-type interleukins. The cellular distribution of CRTH2 in non-immune cells has not been extensively researched, and its identification at the protein level has been limited by the lack of specific antibodies. In this study we explored the possibility that CRTH2 plays a role in 15dPGJ2-mediated inhibition of NF-κB and would therefore represent a novel small molecule therapeutic target for the prevention of inflammation induced preterm labour. METHODS: The effect of a small molecule CRTH2 agonist on NF-κB activity in human cultured amniocytes and myocytes was assessed by detection of p65 and phospho-p65 by immunoblot. Endogenous CRTH2 expression in amniocytes, myocytes and peripheral blood mononuclear cells (PBMCs) was examined by PCR, western analysis and flow cytometry, with amniocytes and myocytes transfected with CRTH2 acting as a positive control in flow cytometry studies. RESULTS: The CRTH2 agonist had no effect on NF-κB activity in amniocytes and myocytes. Although CRTH2 mRNA was detected in amniocytes and myocytes, CRTH2 was not detectable at the protein level, as demonstrated by western analysis and flow cytometry. 15dPGJ2 inhibited phospho-65 in PBMC'S, however the CRTH2 antagonist was not able to attenuate this effect. In conclusion, CRTH2 is not expressed on human amniocytes or myocytes and plays no role in the mechanism of 15dPGJ2-mediated inhibition of NF-κB

    In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization

    Get PDF
    Treating pain by inhibiting ATP activation of P2X3-containing receptors heralds an exciting new approach to pain management, and Afferent's program marks the vanguard in a new class of drugs poised to explore this approach to meet the significant unmet needs in pain management. P2X3 receptor subunits are expressed predominately and selectively in so-called C- and Aδ-fiber primary afferent neurons in most tissues and organ systems, including skin, joints, and hollow organs, suggesting a high degree of specificity to the pain sensing system in the human body. P2X3 antagonists block the activation of these fibers by ATP and stand to offer an alternative approach to the management of pain and discomfort. In addition, P2X3 is expressed pre-synaptically at central terminals of C-fiber afferent neurons, where ATP further sensitizes transmission of painful signals. As a result of the selectivity of the expression of P2X3, there is a lower likelihood of adverse effects in the brain, gastrointestinal, or cardiovascular tissues, effects which remain limiting factors for many existing pain therapeutics. In the periphery, ATP (the factor that triggers P2X3 receptor activation) can be released from various cells as a result of tissue inflammation, injury or stress, as well as visceral organ distension, and stimulate these local nociceptors. The P2X3 receptor rationale has aroused a formidable level of investigation producing many reports that clarify the potential role of ATP as a pain mediator, in chronic sensitized states in particular, and has piqued the interest of pharmaceutical companies. P2X receptor-mediated afferent activation has been implicated in inflammatory, visceral, and neuropathic pain states, as well as in airways hyperreactivity, migraine, itch, and cancer pain. It is well appreciated that oftentimes new mechanisms translate poorly from models into clinical efficacy and effectiveness; however, the breadth of activity seen from P2X3 inhibition in models offers a realistic chance that this novel mechanism to inhibit afferent nerve sensitization may find its place in the sun and bring some merciful relief to the torment of persistent discomfort and pain. The development philosophy at Afferent is to conduct proof of concept patient studies and best identify target patient groups that may benefit from this new intervention

    Impact of protozoan cell death on parasite-host interactions and pathogenesis

    Get PDF
    PCD in protozoan parasites has emerged as a fascinating field of parasite biology. This not only relates to the underlying mechanisms and their evolutionary implications but also to the impact on the parasite-host interactions within mammalian hosts and arthropod vectors. During recent years, common functions of apoptosis and autophagy in protozoa and during parasitic infections have emerged. Here, we review how distinct cell death pathways in Trypanosoma, Leishmania, Plasmodium or Toxoplasma may contribute to regulation of parasite cell densities in vectors and mammalian hosts, to differentiation of parasites, to stress responses, and to modulation of the host immunity. The examples provided indicate crucial roles of PCD in parasite biology. The existence of PCD pathways in these organisms and the identification as being critical for parasite biology and parasite-host interactions could serve as a basis for developing new anti-parasitic drugs that take advantage of these pathways
    corecore