135 research outputs found

    Thermal properties of residual agroforestry biomass of Northern Portugal

    Get PDF
    Biomass from forestry and agricultural sector provides an important contribution to encounter the government’s targets for increasing bioenergy production and utilization. Characterization of agricultural and forest wastes are critical for exploiting and utilizing them for energy purpose. In the present work agricultural and forest wastes and shrubs were sampled in two sites in north Portugal (Ave and Sabor basin) and subjected to Higher Heating Value (HHV) and chemical composition quantification. The HHV was evaluated according to the methodology described in Standard DD CEN/TS14918:2005. For the lignin content, the procedure was made by the Klason method and the extractives content was determined with the Soxhlet method. For agricultural and forest wastes the HHV values are identical with a range of 17 to 21 MJ kg-1. However, shrubs biomass presentx slightly higher and statistically di erent values from agricultural and forest wastes, varying between 19 and 21 MJ kg-1. Forest wastes contain higher levels of holocellulose compared to agricultural wastes and, with respect to extractive contents, this trend is the reverse. There is a general tendency for the woody components present thermo-chemical properties more suited for energy purposes, than the residues formed by the branches and leavesinfo:eu-repo/semantics/publishedVersio

    Formulation of an environmentally friendly adhesive for wood

    Get PDF
    Malaysia has over 4 million hectares of oil palm plantations that yield large amounts of empty fruit bunches (EFB) generated from palm oil milling operations. These forms of lignocellulosic residue pose an environmental hazard if their disposal is not managed in a systematic manner. One of the useful elements extracted from these EFBs is lignin. The general purpose of this study is to explore the potential uses of lignin extracted from soda black liquor (paper and pulping waste) derived from oil palm empty fruit bunches (EFB) in the formulation of a more environmentally friendly wood adhesive. In this work, the potential for replacing phenol with lignin in phenol formaldehyde resin formulation is examined. The quantity of phenol was reduced by synthesizing the resin at a lignin to phenol ratio of 1:1. The physical and chemical properties of lignin phenol formaldehyde resin (LPF) and commercial phenol formaldehyde resin (CPF) were then compared. The infrared spectrum revealed similarities in the functional groups of both LPF and CPF resins. Tensile strength comparisons between both resins revealed that the LPF resin had a higher bonding strength (11.60 MPa more in term of allowable maximum load). In addition, the kinematics viscosity test showed that the LPF resin had lower kinematic viscosity than the CPF resin after 21 days of storage. Finally, the scanning electron microscope images for both resins showed similarities in terms of penetration into wood vessels
    • 

    corecore