37 research outputs found

    Nanog Prion-like Assembly Mediates Dna Bridging to Facilitate Chromatin Reorganization and Activation of Pluripotency

    Get PDF
    Human NANOG expression resets stem cells to ground-state pluripotency. Here we identify the unique features of human NANOG that relate to its dose-sensitive function as a master transcription factor. NANOG is largely disordered, with a C-terminal prion-like domain that phase-transitions to gel-like condensates. Full-length NANOG readily forms higher-order oligomers at low nanomolar concentrations, orders of magnitude lower than typical amyloids. Using single-molecule Förster resonance energy transfer and fluorescence cross-correlation techniques, we show that NANOG oligomerization is essential for bridging DNA elements in vitro. Using chromatin immunoprecipitation sequencing and Hi-C 3.0 in cells, we validate that NANOG prion-like domain assembly is essential for specific DNA recognition and distant chromatin interactions. Our results provide a physical basis for the indispensable role of NANOG in shaping the pluripotent genome. NANOG\u27s unique ability to form prion-like assemblies could provide a cooperative and concerted DNA bridging mechanism that is essential for chromatin reorganization and dose-sensitive activation of ground-state pluripotency

    Pathways to care for people for dementia: an international multi-centre study

    Get PDF
    Objective: the aim of the present study was to characterize the clinical pathways that people with dementia (PwD) in different countries follow to reach specialized dementia care. Methods: we recruited 548 consecutive clinical attendees with a standardized diagnosis of dementia, in 19 specialized public centers for dementia care in 15 countries. The WHO “Encounter Form”, a standardized schedule that enables data concerning basic socio-demographic, clinical and pathways data to be gathered, was completed for each participant. Results: the median time from the appearance of the first symptoms to the first contact with specialist dementia care was 56 weeks. The primary point of access to care was the general practitioners (55.8%). Psychiatrists, geriatricians and neurologists represented the most important second point of access. In about a third of cases, PwD were prescribed psychotropic drugs (mostly antidepressants and tranquillizers). Psychosocial interventions (such as psychological counselling, psychotherapy and practical advice) were delivered in less than 3% of situations. The analyses of the ‘pathways diagram’ revealed that the path of PwD to receiving care is complex, diverse across countries, and that there are important barriers to clinical care. Conclusions: the study of pathways followed by PwD to reach specialized care has implications for the subsequent course and the outcome of dementia. Insights into local differences in the clinical presentations and the implementation of currently available dementia care are essential to develop more tailored strategies for these patients, locally, nationally and internationally

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016

    Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation

    Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity

    Get PDF
    To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense

    The State of US Health, 1990-2016: Burden of Diseases, Injuries, and Risk Factors Among US States.

    Get PDF
    Introduction: Several studies have measured health outcomes in the United States, but none have provided a comprehensive assessment of patterns of health by state. Objective: To use the results of the Global Burden of Disease Study (GBD) to report trends in the burden of diseases, injuries, and risk factors at the state level from 1990 to 2016. Design and Setting: A systematic analysis of published studies and available data sources estimates the burden of disease by age, sex, geography, and year. Main Outcomes and Measures: Prevalence, incidence, mortality, life expectancy, healthy life expectancy (HALE), years of life lost (YLLs) due to premature mortality, years lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 333 causes and 84 risk factors with 95% uncertainty intervals (UIs) were computed. Results: Between 1990 and 2016, overall death rates in the United States declined from 745.2 (95% UI, 740.6 to 749.8) per 100 000 persons to 578.0 (95% UI, 569.4 to 587.1) per 100 000 persons. The probability of death among adults aged 20 to 55 years declined in 31 states and Washington, DC from 1990 to 2016. In 2016, Hawaii had the highest life expectancy at birth (81.3 years) and Mississippi had the lowest (74.7 years), a 6.6-year difference. Minnesota had the highest HALE at birth (70.3 years), and West Virginia had the lowest (63.8 years), a 6.5-year difference. The leading causes of DALYs in the United States for 1990 and 2016 were ischemic heart disease and lung cancer, while the third leading cause in 1990 was low back pain, and the third leading cause in 2016 was chronic obstructive pulmonary disease. Opioid use disorders moved from the 11th leading cause of DALYs in 1990 to the 7th leading cause in 2016, representing a 74.5% (95% UI, 42.8% to 93.9%) change. In 2016, each of the following 6 risks individually accounted for more than 5% of risk-attributable DALYs: tobacco consumption, high body mass index (BMI), poor diet, alcohol and drug use, high fasting plasma glucose, and high blood pressure. Across all US states, the top risk factors in terms of attributable DALYs were due to 1 of the 3 following causes: tobacco consumption (32 states), high BMI (10 states), or alcohol and drug use (8 states). Conclusions and Relevance: There are wide differences in the burden of disease at the state level. Specific diseases and risk factors, such as drug use disorders, high BMI, poor diet, high fasting plasma glucose level, and alcohol use disorders are increasing and warrant increased attention. These data can be used to inform national health priorities for research, clinical care, and policy

    Large-scale exome-wide association analysis identifies loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases

    Get PDF
    White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3 UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. METHODS: The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries-Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised

    Aggregation of Disordered Proteins Associated with Neurodegeneration

    No full text
    Cellular deposition of protein aggregates, one of the hallmarks of neurodegeneration, disrupts cellular functions and leads to neuronal death. Mutations, posttranslational modifications, and truncations are common molecular underpinnings in the formation of aberrant protein conformations that seed aggregation. The major proteins involved in neurodegeneration include amyloid beta (Aβ) and tau in Alzheimer’s disease, α-synuclein in Parkinson’s disease, and TAR DNA-binding protein (TDP-43) in amyotrophic lateral sclerosis (ALS). These proteins are described as intrinsically disordered and possess enhanced ability to partition into biomolecular condensates. In this review, we discuss the role of protein misfolding and aggregation in neurodegenerative diseases, specifically highlighting implications of changes to the primary/secondary (mutations, posttranslational modifications, and truncations) and the quaternary/supramolecular (oligomerization and condensation) structural landscapes for the four aforementioned proteins. Understanding these aggregation mechanisms provides insights into neurodegenerative diseases and their common underlying molecular pathology
    corecore