20 research outputs found

    Structure based inhibitor design targeting glycogen phosphorylase b. Virtual screening, synthesis, biochemical and biological assessment of novel N-acyl-β-d-glucopyranosylamines

    Get PDF
    Glycogen phosphorylase (GP) is a validated target for the development of new type 2 diabetes treatments. Exploiting the Zinc docking database, we report the in silico screening of 1888 β- D-glucopyranose-NH-CO-R putative GP inhibitors differing only in their R groups. CombiGlide and GOLD docking programs with different scoring functions were employed with the best performing methods combined in a “consensus scoring” approach to ranking of ligand binding affinities for the active site. Six selected candidates from the screening were then synthesized and their inhibitory potency was assessed both in vitro and ex vivo. Their inhibition constants’ values, in vitro, ranged from 5 to 377 µM while two of them were effective at causing inactivation of GP in rat hepatocytes at low µM concentrations. The crystal structures of GP in complex with the inhibitors were defined and provided the structural basis for their inhibitory potency and data for further structure based design of more potent inhibitors

    Structure–Activity Relationship of Halophenols as a New Class of Protein Tyrosine Kinase Inhibitors

    Get PDF
    A series of new benzophenone and diphenylmethane halophenol derivatives were prepared. Their structures were established based on 1H NMR, 13C NMR and HRMS data. All prepared compounds were screened for their in vitro protein tyrosine kinase (PTK) inhibitory activities. The effects of modification of the linker, functional groups and substituted positions at the phenyl ring on PTK inhibitory activity were investigated. Twelve halophenols showed significant PTK inhibitory activity. Among them, compounds 6c, 6d, 7d, 9d, 10d, 11d and 13d exhibited stronger activities than that of genistein, the positive reference compound. The results gave a relatively full and definite description of the structure–activity relationship and provided a foundation for further design and structure optimization of the halophenols

    Structure of transportin SR2, a karyopherin involved in human disease, in complex with Ran

    Get PDF
    Transportin SR2 (TRN-SR2) is a -type karyopherin responsible for the nuclear import of specific cargoes, including serine/arginine-rich splicing factors. The protein has been implicated in a variety of human diseases, including HIV infection, primary biliary cirrhosis and limb-girdle muscular dystrophy 1F. Towards understanding its molecular mechanism, a 2.9 A ˚ resolution crystal structure of human TRN-SR2 complexed with the small GTPase Ran has been determined. TRN-SR2 is composed of 20 -helical HEAT repeats forming a solenoid-like fold. The first nine repeats form a ‘cradle’ for the binding of RanGTP, revealing similarities but also differences with respect to the related importin 13 complex.journal: Acta Crystallographica Section F: Structural Biology Communications content_type: structural communications peer_reviewed: Yes review_process: Single blind received: 21 March 2014 accepted: 28 April 2014 published_online: 24 May 2014 supplementary_materials: This article has supporting information copyright: © 2014 International Union of Crystallographystatus: publishe

    Inhibitor design for ribonuclease A: the binding of two 5'-phosphate uridine analogues

    No full text
    In the quest for the rational design of selective and potent inhibitors for members of the pancreatic ribonuclease A (RNase A) family of biomedical interest, the binding of uridine 5'-phosphate (U5P) and uridine 5'-diphosphate (UDP) to RNase A have been investigated using kinetic studies and X-ray crystallography. Both nucleotides are competitive inhibitors of the enzyme, with Ki values of 4.0 and 0.65 mM, respectively. They bind to the active site of the enzyme by anchoring two molecules connected to each other by hydrogen bonds and van der Waals interactions. While the first of the inhibitor molecules binds with its nucleobase in the pyrimidinyl-binding subsite, the second is bound at the purine-preferring subsite. The unexpected binding of a pyrimidine at the purine-binding subsite has added new important elements to the rational design approach for the discovery of new potent inhibitors of the RNase A superfamily

    N-terminal half of transportin SR2 interacts with HIV integrase

    No full text
    The karyopherin transportin SR2 (TRN-SR2, TNPO3) is responsible for shuttling specific cargoes such as serine/arginine-rich splicing factors from the cytoplasm to the nucleus. This protein plays a key role in HIV infection by facilitating the nuclear import of the pre-integration complex (PIC) that contains the viral DNA as well as several cellular and HIV proteins, including the integrase. The process of nuclear import is considered to be the bottleneck of the viral replication cycle and therefore represents a promising target for anti-HIV drug design. Previous studies have demonstrated that the direct interaction between TRN-SR2 and HIV integrase predominantly involves the catalytic core domain (CCD) and the C-terminal domain (CTD) of the integrase. We aimed at providing a detailed molecular view of this interaction through a biochemical characterization of the respective protein complex. Size-exclusion chromatography was used to characterize the interaction of TRN-SR2 with a truncated variant of the HIV-1 integrase, including both the CCD and CTD. These experiments indicate that one TRN-SR2 molecule can specifically bind one CCD-CTD dimer. Next, the regions of the solenoid-like TRN-SR2 molecule that are involved in the interaction with integrase were identified using AlphaScreen binding assays, revealing that the integrase interacts with the N-terminal half of TRN-SR2 principally through the HEAT repeats 4, 10, and 11. Combining these results with small-angle X-ray scattering data for the complex of TRN-SR2 with truncated integrase, we propose a molecular model of the complex. We speculate that nuclear import of the PIC may proceed concurrently with the normal nuclear transport.status: publishe

    Interaction of Transportin-SR2 with Ras-related nuclear protein (Ran) GTPase

    No full text
    The human immunodeficiency virus type 1 (HIV-1) and other lentiviruses are capable of infecting non-dividing cells and therefore need to be imported into the nucleus prior to integration into the host cell chromatin. Transportin-SR2 (TRN-SR2, Transportin-3, TNPO3) is a cellular karyopherin implicated in nuclear import of HIV-1. A model in which TRN-SR2 imports the viral preintegration complex (PIC) into the nucleus is supported by direct interaction between TRN-SR2 and HIV-1 integrase (IN). Residues in the C-terminal domain of HIV-1 IN that mediate binding to TRN-SR2 were recently delineated. As for most nuclear import cargoes, the driving force behind HIV-1 PIC import is likely a gradient of the GDP- and GTP-bound forms of Ran, a small GTPase. In this study we offer biochemical and structural characterization of the interaction between TRN-SR2 and Ran. By size exclusion chromatography we demonstrate stable complex formation of TRN-SR2 and RanGTP in solution. Consistent with the behavior of normal nuclear import cargoes, HIV-1 IN is released from the complex with TRN-SR2 by RanGTP. While in concentrated solutions TRN-SR2 by itself was predominantly present as a dimer, the TRN-SR2-RanGTP complex was significantly more compact. Further analysis supported a model wherein one monomer of TRN-SR2 is bound to one monomer of RanGTP. Finally, we present a homology model of the TRN-SR2-RanGTP complex, which is in excellent agreement with the experimental SAXS data.status: publishe

    The ammonium sulfate inhibition of human angiogenin

    No full text
    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. © 2016 Federation of European Biochemical Societie

    Crystal structure of Arabidopsis thaliana neutral invertase 2

    No full text
    The metabolism of sucrose is of crucial importance for life on Earth. In plants, enzymes called invertases split sucrose into glucose and fructose, contributing to the regulation of metabolic fluxes. Invertases differ in their localization and pH optimum. Acidic invertases present in plant cell walls and vacuoles belong to glycoside hydrolase family 32 (GH32) and have an all-β structure. In contrast, neutral invertases are located in the cytosol and organelles such as chloroplasts and mitochondria. These poorly understood enzymes are classified into a separate GH100 family. Recent crystal structures of the closely related neutral invertases InvA and InvB from the cyanobacterium Anabaena revealed a predominantly α-helical fold with unique features compared with other sucrose-metabolizing enzymes. Here, a neutral invertase (AtNIN2) from the model plant Arabidopsis thaliana was heterologously expressed, purified and crystallized. As a result, the first neutral invertase structure from a higher plant has been obtained at 3.4 Å resolution. The hexameric AtNIN2 structure is highly similar to that of InvA, pointing to high evolutionary conservation of neutral invertases.status: publishe

    Mapping the ribonucleolytic active site of bovine seminal ribonuclease. The binding of pyrimidinyl phosphonucleotide inhibitors

    No full text
    Bovine seminal ribonuclease (BS-RNase) is a 27 kDa homodimeric enzyme and a member of the pancreatic RNase A superfamily. It is the only RNase with a quaternary structure and it is a mixture of two dimeric forms. In the most abundant form the active site is formed by the swapping of the N-terminal segments. BS-RNase is a potent antitumor agent with severe side effects such as aspermatogenicity, and immunosuppression. As a first step towards the design of potent inhibitors of this enzyme we mapped its active site through the study of the binding of uridine 2′-phosphate (U2′p), uridine 3′-phosphate (U3′p), uridine 5′-diphosphate (UDP), cytidine 3′-phosphate (C3′p), and cytidine 5-phosphate (C5′p), by kinetics, and X-ray crystallography. These phosphonucleotides are potent inhibitors with C3′p being the most potent with a Ki value of 22 μM. Absorption, distribution, metabolism, and excretion pharmacokinetic property predictions reveal U2′p, U3′p, and C5′p as the most promising with respect to oral bioavailability. In vivo studies on the aspermatogenic effect have shown that C3′p and C5′p inhibit significantly this biological action of BS-RNase
    corecore