24 research outputs found

    Anomalous Microfluidic Phonons Induced by the Interplay of Hydrodynamic Screening and Incompressibility

    Full text link
    We investigate the acoustic normal modes ("phonons") of a 1D microfluidic droplet crystal at the crossover between 2D flow and confined 1D plug flow. The unusual phonon spectra of the crystal, which arise from long-range hydrodynamic interactions, change anomalously under confinement. The boundaries induce weakening and screening of the interactions, but when approaching the 1D limit we measure a marked increase in the crystal sound velocity, a sign of interaction strengthening. This non-monotonous behavior of the phonon spectra is explained theoretically by the interplay of screening and plug flow.Comment: http://link.aps.org/doi/10.1103/PhysRevLett.99.124502 http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevLett2007.pd

    A refined estimate for the topological degree

    Get PDF
    We sharpen an estimate of Bourgain, Brezis, and Nguyen for the topological degree of continuous maps from a sphere Sd\mathbb{S}^d into itself in the case d2d \ge 2. This provides the answer for d2d \ge 2 to a question raised by Brezis. The problem is still open for d=1d=1

    Solving the thoracic inverse problem in the fruit fly

    Get PDF
    In many insect species, the thoracic exoskeletal structure plays a crucial role in enabling flight. In the dipteran indirect flight mechanism, thoracic cuticle acts as a transmission link between the flight muscles and the wings, and it is often thought to act as an elastic modulator: improving flight motor efficiency thorough linear or nonlinear resonance. But peering closely into the drivetrain of tiny insects is experimentally difficult, and the nature of this elastic modulation is unclear. Here, we present a new inverse-problem methodology to surmount this difficulty. In a data synthesis process, we integrate experimentally-observableliterature-reported rigid-wing aerodynamic and musculoskeletal data into a planar oscillator model for the fruit fly Drosophila melanogaster, and use this integrated dataset data to identify several surprising properties of the fly\u27s thorax. We find that fruit flies likely have an energetic need for flight motor resonance: absolute power savings due to flight motor elasticity range from 0-30% across literature-reported datasets, averaging \ua0average 16%. However, in all cases, the intrinsic high effective stiffness of the active asynchronous flight muscles accounts for all the elasticity elastic energy storage required by the wingbeat. The D. melanogaster flight motor should be considered as a system in which the wings are resonant with the elastic effects of the motor’s asynchronous musculature, and not with the elastic effects of the thoracic exoskeleton. We discover also a fundamental link betweenthat the D. melanogaster wingbeat kinematics and musculature dynamics: wingbeat kinematics areshow subtle adaptions adapted to that ensure that wingbeat load requirements match musculature load outputmuscular forcing capability. Together, these newly-identified properties lead suggestto a novel conceptual model of the fruit fly\u27s flight motor: a structure that is resonant due to muscular elasticity, and is thereby intensely concerned with ensuring that the primary flight muscles are operating efficiently. Our inverse-problem methodology sheds new light on the complex behaviour of these tiny flight motors, and provides avenues for further studies in a range of other insect species

    Phonons in a one-dimensional microfluidic crystal

    Full text link
    The development of a general theoretical framework for describing the behaviour of a crystal driven far from equilibrium has proved difficult1. Microfluidic crystals, formed by the introduction of droplets of immiscible fluid into a liquid-filled channel, provide a convenient means to explore and develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Owing to the fact that these systems operate at low Reynolds number (Re), in which viscous dissipation of energy dominates inertial effects, vibrations are expected to be over-damped and contribute little to their dynamics12, 13, 14. Against such expectations, we report the emergence of collective normal vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies of a few hertz, exhibit unusual dispersion relations markedly different to those of harmonic crystals, and give rise to a variety of crystal instabilities that could have implications for the design of commercial microfluidic systems. First-principles theory shows that these phonons are an outcome of the symmetry-breaking flow field that induces long-range inter-droplet interactions, similar in nature to those observed in many other systems including dusty plasma crystals15, 16, vortices in superconductors17, 18, active membranes19 and nucleoprotein filaments20.Comment: https://www.weizmann.ac.il/complex/tlusty/papers/NaturePhys2006.pd

    Distinct forms of resonant optimality within insect indirect flight motors

    No full text
    Insect flight motors are extraordinary natural structures that operate efficiently at high frequencies. Structural resonance is thought to play a role in ensuring efficient motor operation, but the details of this role are elusive. While the efficiency benefits associated with resonance may be significant, a range of counterintuitive behaviours are observed. In particular, the relationship between insect wingbeat frequencies and thoracic natural frequencies are uncertain, with insects showing wingbeat frequency modulation over both short and long timescales. Here, we offer new explanations for this modulation. We show how, in linear and nonlinear models of an indirect flight motor, resonance is not a unitary state at a single frequency; but a complex cluster of distinct and mutually-exclusive states, each representing a different form of resonant optimality. Additionally, by characterising the relationship between resonance and the state of negative work absorption within the motor, we demonstrate how near-perfect negative work absorption can be maintained over significant wingbeat frequency ranges. Our analysis leads to a new conceptual model of flight motor operation: one in which insects are indifferent to their precise wingbeat frequency, and robust to changes in thoracic and environmental properties - illustrating the extraordinary robustness of these natural motors

    Band-type resonance: non-discrete energetically-optimal resonant states

    No full text
    Structural resonance involves the absorption of inertial loads by a tuned structural elasticity: a process playing a key role in a wide range of biological and technological systems, including many biological and bio-inspired locomotion systems. Conventional linear and nonlinear resonant states typically exist at specific discrete frequencies, and specific symmetric waveforms. This discreteness can be an obstacle to resonant control modulation: deviating from these states, by breaking waveform symmetry or modulating drive frequency, generally leads to losses in system efficiency. Here, we demonstrate a new strategy for achieving these modulations at no loss of energetic efficiency. Leveraging fundamental advances in nonlinear dynamics, we characterise a new form of structural resonance: band-type resonance, describing a continuous band of energetically-optimal resonant states existing around conventional discrete resonant states. These states are a counterexample to the common supposition that deviation from a linear (or nonlinear) resonant frequency necessarily involves a loss of efficiency. We demonstrate how band-type resonant states can be generated via a spectral shaping approach: with small modifications to the system kinematic and load waveforms, we construct sets of frequency-modulated and symmetry-broken resonant states that show equal energetic optimality to their conventional discrete analogues. The existence of these non-discrete resonant states in a huge range of oscillators - linear and nonlinear, in many different physical contexts - is a new dynamical-systems phenomenon. It has implications not only for biological and bio-inspired locomotion systems but for a constellation of forced oscillator systems across physics, engineering, and biology

    Model-Based Tracking of Fruit Flies in Free Flight

    No full text
    Insect flight is a complex interdisciplinary phenomenon. Understanding its multiple aspects, such as flight control, sensory integration, physiology and genetics, often requires the analysis of large amounts of free flight kinematic data. Yet, one of the main bottlenecks in this field is automatically and accurately extracting such data from multi-view videos. Here, we present a model-based method for the pose estimation of free-flying fruit flies from multi-view high-speed videos. To obtain a faithful representation of the fly with minimum free parameters, our method uses a 3D model that includes two new aspects of wing deformation: A non-fixed wing hinge and a twisting wing surface. The method is demonstrated for free and perturbed flight. Our method does not use prior assumptions on the kinematics apart from the continuity of the wing pitch angle. Hence, this method can be readily adjusted for other insect species
    corecore