9,484 research outputs found

    Production of large-particle-size monodisperse latexes

    Get PDF
    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization

    Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants

    Get PDF
    The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America

    Exclusive Hadronic D Decays to eta' and eta

    Full text link
    Hadronic decay modes D0(Kˉ0,Kˉ0)η,ηD^0\to(\bar K^0, \bar K^{*0})\eta,\eta' and (D+,Ds+)(π+,ρ+)η,η(D^+,D_s^+)\to(\pi^+,\rho^+)\eta,\eta' are studied in the generalized factorization approach. Form factors for (D,Ds+)(η,η)(D,D_s^+)\to(\eta,\eta') transitions are carefully evaluated by taking into account the wave function normalization of the eta and eta'. The predicted branching ratios are generally in agreement with experiment except for D0Kˉ0η,D+π+ηD^0\to\bar K^0\eta', D^+\to\pi^+\eta and Ds+ρ+ηD_s^+\to\rho^+\eta'; the calculated decay rates for the first two decay modes are too small by an order of magnitude. We show that the weak decays D0Kπ+D^0\to K^-\pi^+ and D+K+Kˉ0D^+\to K^+\bar K^0 followed by resonance-induced final-state interactions (FSI), which are amenable technically, are able to enhance the branching ratios of D0Kˉ0ηD^0\to\bar K^0\eta' and D+π+ηD^+\to\pi^+\eta dramatically without affecting the agreement between theory and experiment for D0Kˉ0ηD^0\to\bar K^0\eta and D+π+ηD^+\to\pi^+\eta'. We argue that it is difficult to understand the observed large decay rates of Ds+ρ+ηD_s^+\to \rho^+\eta' and ρ+η\rho^+\eta simultaneously; FSI, W-annihilation and the production of excess eta' from gluons are not helpful in this regard. The large discrepancy between the factorization hypothesis and experiment for the ratio of Ds+ρ+ηD_s^+\to\rho^+ \eta' and Ds+ηe+νD_s^+\to\eta' e^+\nu remains as an enigma.Comment: 15 pages, 1 figure, to appear in Phys. Rev. D. Form factors for D to eta and eta' transitions are slightly change

    Ultrasonic technology applied against mosquito larvae

    Get PDF
    The effective management of mosquito vectors is a timely challenge for medical and veterinary entomology. In this study, we evaluated the acoustic Larvasonic device to control young instars of the mosquito Aedes aegypti in diverse freshwater environments. Under laboratory conditions, we investigated the effect of exposure time and distance from the transducer on the mortality of larvae and pupae of Ae. aegypti. Furthermore, we evaluated the effectiveness of the ultrasound window of the electromagnetic spectrum under different field conditions. Results showed that first and second instar larvae were more sensitive to the frequency range of 18-30 kHz of the Larvasonic device. Ultrasonic waves applied for 180 s at a frequency from 18 to 30 kHz caused 100% larval mortality at a distance of 60 cm from the transducer. No mortality was observed in the non-target copepod Megacyclops formosanus. The exposure to the soundwaves produced by the acoustic larvicidal device over different distances effectively damaged Ae. aegypti through destruction of the larval dorsal tracheal trunk, thorax and abdomen. Overall, results indicated that the Larvasonic device tested can provide an alternative tool to reduce young instar populations of Ae. aegypti, without any effects on non-target aquatic invertebrates like copepods. It turned out to be a useful device for mosquito biocontrol. This technology has a relevant potential to fight the spread of mosquito-borne diseases

    Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors

    Full text link
    Penalized regression is an attractive framework for variable selection problems. Often, variables possess a grouping structure, and the relevant selection problem is that of selecting groups, not individual variables. The group lasso has been proposed as a way of extending the ideas of the lasso to the problem of group selection. Nonconvex penalties such as SCAD and MCP have been proposed and shown to have several advantages over the lasso; these penalties may also be extended to the group selection problem, giving rise to group SCAD and group MCP methods. Here, we describe algorithms for fitting these models stably and efficiently. In addition, we present simulation results and real data examples comparing and contrasting the statistical properties of these methods

    A Method for Modeling Decoherence on a Quantum Information Processor

    Full text link
    We develop and implement a method for modeling decoherence processes on an N-dimensional quantum system that requires only an N2N^2-dimensional quantum environment and random classical fields. This model offers the advantage that it may be implemented on small quantum information processors in order to explore the intermediate regime between semiclassical and fully quantum models. We consider in particular σzσz\sigma_z\sigma_z system-environment couplings which induce coherence (phase) damping, though the model is directly extendable to other coupling Hamiltonians. Effective, irreversible phase-damping of the system is obtained by applying an additional stochastic Hamiltonian on the environment alone, periodically redressing it and thereby irreversibliy randomizing the system phase information that has leaked into the environment as a result of the coupling. This model is exactly solvable in the case of phase-damping, and we use this solution to describe the model's behavior in some limiting cases. In the limit of small stochastic phase kicks the system's coherence decays exponentially at a rate which increases linearly with the kick frequency. In the case of strong kicks we observe an effective decoupling of the system from the environment. We present a detailed implementation of the method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure
    corecore