9,484 research outputs found
Production of large-particle-size monodisperse latexes
The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization
Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants
The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America
Exclusive Hadronic D Decays to eta' and eta
Hadronic decay modes and
are studied in the generalized
factorization approach. Form factors for transitions
are carefully evaluated by taking into account the wave function normalization
of the eta and eta'. The predicted branching ratios are generally in agreement
with experiment except for and
; the calculated decay rates for the first two decay modes
are too small by an order of magnitude. We show that the weak decays and followed by resonance-induced final-state
interactions (FSI), which are amenable technically, are able to enhance the
branching ratios of and dramatically
without affecting the agreement between theory and experiment for and . We argue that it is difficult to understand
the observed large decay rates of and
simultaneously; FSI, W-annihilation and the production of excess eta' from
gluons are not helpful in this regard. The large discrepancy between the
factorization hypothesis and experiment for the ratio of
and remains as an enigma.Comment: 15 pages, 1 figure, to appear in Phys. Rev. D. Form factors for D to
eta and eta' transitions are slightly change
Ultrasonic technology applied against mosquito larvae
The effective management of mosquito vectors is a timely challenge for medical and veterinary entomology. In this study, we evaluated the acoustic Larvasonic device to control young instars of the mosquito Aedes aegypti in diverse freshwater environments. Under laboratory conditions, we investigated the effect of exposure time and distance from the transducer on the mortality of larvae and pupae of Ae. aegypti. Furthermore, we evaluated the effectiveness of the ultrasound window of the electromagnetic spectrum under different field conditions. Results showed that first and second instar larvae were more sensitive to the frequency range of 18-30 kHz of the Larvasonic device. Ultrasonic waves applied for 180 s at a frequency from 18 to 30 kHz caused 100% larval mortality at a distance of 60 cm from the transducer. No mortality was observed in the non-target copepod Megacyclops formosanus. The exposure to the soundwaves produced by the acoustic larvicidal device over different distances effectively damaged Ae. aegypti through destruction of the larval dorsal tracheal trunk, thorax and abdomen. Overall, results indicated that the Larvasonic device tested can provide an alternative tool to reduce young instar populations of Ae. aegypti, without any effects on non-target aquatic invertebrates like copepods. It turned out to be a useful device for mosquito biocontrol. This technology has a relevant potential to fight the spread of mosquito-borne diseases
Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors
Penalized regression is an attractive framework for variable selection
problems. Often, variables possess a grouping structure, and the relevant
selection problem is that of selecting groups, not individual variables. The
group lasso has been proposed as a way of extending the ideas of the lasso to
the problem of group selection. Nonconvex penalties such as SCAD and MCP have
been proposed and shown to have several advantages over the lasso; these
penalties may also be extended to the group selection problem, giving rise to
group SCAD and group MCP methods. Here, we describe algorithms for fitting
these models stably and efficiently. In addition, we present simulation results
and real data examples comparing and contrasting the statistical properties of
these methods
A Method for Modeling Decoherence on a Quantum Information Processor
We develop and implement a method for modeling decoherence processes on an
N-dimensional quantum system that requires only an -dimensional quantum
environment and random classical fields. This model offers the advantage that
it may be implemented on small quantum information processors in order to
explore the intermediate regime between semiclassical and fully quantum models.
We consider in particular system-environment couplings which
induce coherence (phase) damping, though the model is directly extendable to
other coupling Hamiltonians. Effective, irreversible phase-damping of the
system is obtained by applying an additional stochastic Hamiltonian on the
environment alone, periodically redressing it and thereby irreversibliy
randomizing the system phase information that has leaked into the environment
as a result of the coupling. This model is exactly solvable in the case of
phase-damping, and we use this solution to describe the model's behavior in
some limiting cases. In the limit of small stochastic phase kicks the system's
coherence decays exponentially at a rate which increases linearly with the kick
frequency. In the case of strong kicks we observe an effective decoupling of
the system from the environment. We present a detailed implementation of the
method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure
- …