9,529 research outputs found

    Niobium hyperfine structure in crystal calcium tungstate

    Get PDF
    A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal

    Steady, oscillatory, and unsteady subsonic Aerodynamics, production version 1.1 (SOUSSA-P1.1). Volume 2: User/programmer manual

    Get PDF
    A user/programmer manual for the computer program SOUSSA P 1.1 is presented. The program was designed to provide accurate and efficient evaluation of steady and unsteady loads on aircraft having arbitrary shapes and motions, including structural deformations. These design goals were in part achieved through the incorporation of the data handling capabilities of the SPAR finite element Structural Analysis computer program. As a further result, SOUSSA P possesses an extensive checkpoint/ restart facility. The programmer's portion of this manual includes overlay/subroutine hierarchy, logical flow of control, definition of SOUSSA P 1.1 FORTRAN variables, and definition of SOUSSA P 1.1 subroutines. Purpose of the SOUSSA P 1.1 modules, input data to the program, output of the program, hardware/software requirements, error detection and reporting capabilities, job control statements, a summary of the procedure for running the program and two test cases including input and output and listings are described in the user oriented portion of the manual

    Reaching Approximate Byzantine Consensus with Multi-hop Communication

    Full text link
    We address the problem of reaching consensus in the presence of Byzantine faults. In particular, we are interested in investigating the impact of messages relay on the network connectivity for a correct iterative approximate Byzantine consensus algorithm to exist. The network is modeled by a simple directed graph. We assume a node can send messages to another node that is up to ll hops away via forwarding by the intermediate nodes on the routes, where lNl\in \mathbb{N} is a natural number. We characterize the necessary and sufficient topological conditions on the network structure. The tight conditions we found are consistent with the tight conditions identified for l=1l=1, where only local communication is allowed, and are strictly weaker for l>1l>1. Let ll^* denote the length of a longest path in the given network. For lll\ge l^* and undirected graphs, our conditions hold if and only if n3f+1n\ge 3f+1 and the node-connectivity of the given graph is at least 2f+12f+1 , where nn is the total number of nodes and ff is the maximal number of Byzantine nodes; and for lll\ge l^* and directed graphs, our conditions is equivalent to the tight condition found for exact Byzantine consensus. Our sufficiency is shown by constructing a correct algorithm, wherein the trim function is constructed based on investigating a newly introduced minimal messages cover property. The trim function proposed also works over multi-graphs.Comment: 24 pages, 1 figure. arXiv admin note: text overlap with arXiv:1203.188

    On the Boundary Entropy of One-dimensional Quantum Systems at Low Temperature

    Full text link
    The boundary beta-function generates the renormalization group acting on the universality classes of one-dimensional quantum systems with boundary which are critical in the bulk but not critical at the boundary. We prove a gradient formula for the boundary beta-function, expressing it as the gradient of the boundary entropy s at fixed non-zero temperature. The gradient formula implies that s decreases under renormalization except at critical points (where it stays constant). At a critical point, the number exp(s) is the ``ground-state degeneracy,'' g, of Affleck and Ludwig, so we have proved their long-standing conjecture that g decreases under renormalization, from critical point to critical point. The gradient formula also implies that s decreases with temperature except at critical points, where it is independent of temperature. The boundary thermodynamic energy u then also decreases with temperature. It remains open whether the boundary entropy of a 1-d quantum system is always bounded below. If s is bounded below, then u is also bounded below.Comment: 12 pages, Latex, 1 eps-figure; v2: some expository material added, a slightly more condensed version of the paper is publihed in Phys. Rev. Let

    Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry

    Get PDF
    Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated

    An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults

    Full text link
    This paper explores the problem of reaching approximate consensus in synchronous point-to-point networks, where each pair of nodes is able to communicate with each other directly and reliably. We consider the mobile Byzantine fault model proposed by Garay '94 -- in the model, an omniscient adversary can corrupt up to ff nodes in each round, and at the beginning of each round, faults may "move" in the system (i.e., different sets of nodes may become faulty in different rounds). Recent work by Bonomi et al. '16 proposed a simple iterative approximate consensus algorithm which requires at least 4f+14f+1 nodes. This paper proposes a novel technique of using "confession" (a mechanism to allow others to ignore past behavior) and a variant of reliable broadcast to improve the fault-tolerance level. In particular, we present an approximate consensus algorithm that requires only 7f/2+1\lceil 7f/2\rceil + 1 nodes, an f/2\lfloor f/2 \rfloor improvement over the state-of-the-art algorithms. Moreover, we also show that the proposed algorithm is optimal within a family of round-based algorithms

    Salient collinear grouping diminishes local salience in visual search: An eye movement study

    Get PDF
    SCI Impact Factor(2011)=2.417[[abstract]]Our eyes and attention are easily attracted to salient items in search displays. When a target is spatially overlapped with a salient distractor (overlapping target), it is usually detected more easily than when it is not (nonoverlapping target). Jingling and Tseng (2013), however, found that a salient distractor impaired visual search when the distractor was comprised of more than nine bars collinearly aligned to each other. In this study, we examined whether this search impairment is due to reduction of salience on overlapping targets. We used the short-latency saccades as an index for perceptual salience. Results showed that a long collinear distractor decreases perceptual salience of local overlapping targets in comparison to nonoverlapping targets, reflected by a smaller proportion of the short-latency saccades. Meanwhile, a salient noncollinear distractor increases salience of overlapping targets. Our results led us to conclude that a long collinear distractor diminishes the perceptual salience of the target, a factor which poses a counter-intuitive condition in which a target on a salient region becomes less salient. We discuss the possible causes for our findings, including crowding, the global precedence effect, and the filling-in of a collinear contour.[[notice]]補正完畢[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]US

    Production of large-particle-size monodisperse latexes

    Get PDF
    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization

    GDNF reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanism not involving striatal dopamine

    Get PDF
    Parkinson's disease (PD) is characterized by the progressive loss of the substantia nigra (SN) dopaminergic neurons projecting to the striatum. Neurotrophic factors may have the potential to prevent or slow down the degenerative process occurring in PD. To that end, we examined whether low amounts of glial cell line-derived neurotrophic factor (GDNF) continuously released from polymer-encapsulated genetically engineered cells are able to prevent the loss of tyrosine hydroxylase immunoreactivity (TH-IR) in SN neurons and ameliorate the amphetamine-induced rotational asymmetry in rats that have been subjected to a unilateral medial forebrain bundle (MFB) axotomy. Baby hamster kidney (BHK) cells transfected with the cDNA for GDNF were encapsulated in a polymer fiber and implanted unilaterally at a location lateral to the MFB and rostral to the SN. ELISA assays before implantation show that the capsules release approximately 5 ng of GDNF/capsule per day. One week later, the MFB was axotomized unilaterally ipsilateral to the capsule placement. Seven days later, the animals were tested for amphetamine-induced rotational asymmetry and killed. The striatum was excised and analyzed either for catecholamine content or TH-IR, while the SN was immunostained for the presence of TH-IR. GDNF did not prevent the loss of dopamine in the striatum. However, GDNF significantly rescued TH-IR neurons in the SN pars compacta. Furthermore, GDNF also significantly reduced the number of turns per minute ipsilateral to the lesion under the influence of amphetamine. Improvement of rotational behavior in the absence of dopaminergic striatal reinnervation may reflect neuronal plasticity in the SN, as suggested by the dendritic sprouting observed in animals receiving GDNF. These results illustrate that the continuous release of low levels of GDNF close to the SN is capable of protecting the nigral dopaminergic neurons from an axotomy-induced lesion and significantly improving pharmacological rotational behavior by a mechanism other than dopaminergic striatal reinnervation
    corecore